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ABSTRACT 

     This paper presents a cubic generalization of the Lambert 𝑊 function, or simply called 

the Cubic Lambert W function, and establish its Taylor series, derivative and its real 

branches, Taylor series expansion of its integral and its Mellin transform. The Mellin 

transform is known to be useful in computer science in the analysis of algorithm and in 

number theory in the analysis of the prime-counting function while it is a fact that Taylor 

series expansion of the function is useful to obtain approximation values. In the final 

section of the paper, the derivative and the real branches of the function are used to 

establish that the fixed-point solution in the application to a nonlinear differential 

equation is stable.  
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INTRODUCTION 

The Lambert W function which is the 

solution to the equation 𝑤𝑒𝑤 = 𝑥 appears in

many applications such as in a solution of a jet 

fuel problem, of a model combustion problem, of 

an enzyme kinetics problem, of linear constant-

coefficient delay equations, and has 

combinatorial applications and many others 

(Corless et al., 1996). The Lambert W function 

was named after the Swiss polymath Johann 

Heinrich Lambert (1728-1777), who first 

introduced the function in 1758.  The letter W for 

this function is due to an early Maple usage. An 

additional significance of the letter W in the 

function is the pioneering work on many aspects 

of W by Wright (1959). 

A motivation to generalize the Lambert W 

function is the asymptotic estimation of the Bell 

and generalized Bell numbers (Mezö and Baricz, 

2017). The application to generalized Bell 

numbers is found in finding the asymptotic 

behavior of the r-Bell numbers as 𝑛 → ∞  and  𝑟  

is fixed (Corcino and Corcino, 2013). 

A quadratic generalization of the Lambert W 

function has been studied separately. In the 

present paper a cubic generalization is presented 

and we derived its basic analytic properties such 

as derivative, integral and Taylor series, Mellin 

transform and its real branches for a positive 

parameter are discussed. 

BASIC PROPERTIES OF CUBIC 

LAMBERT FUNCTION 

Derivative of the Cubic Lambert and Its 

Real Branches 

    Consider the following equation that defines 

the cubic Lambert function 𝑦 = 𝑊(3; 𝑎, 𝑥) 

𝑦𝑒𝑎𝑦3+𝑦 = 𝑥,   𝑎 ≠ 0.  (2.1) 

Let 𝑦 = 𝑊(3; 𝑎, 𝑥) ≔ 𝑊. Then taking the 

implicit differentiation with respect to 𝑥, we have  

𝑑

𝑑𝑥
(𝑊𝑒𝑎𝑊3+𝑊 = 𝑥)

𝑊𝑒𝑎𝑊3+𝑊(3𝑎𝑊2 ∙ 𝑊′ + 𝑊′) + 𝑊′ ∙ 𝑒𝑎𝑊3+𝑊 = 1

(𝑊𝑒𝑎𝑊3+𝑊(3𝑎𝑊2 + 1) + 𝑒𝑎𝑊3+𝑊)𝑊′ = 1

𝑊′(3; 𝑎, 𝑥) =
𝑒−𝑎𝑊3−𝑊

𝑊(3𝑎𝑊2 + 1) + 1
=

𝑒−𝑎𝑊3−𝑊

3𝑎𝑊3 + 𝑊 + 1
. 
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𝑊′(3; 𝑎, 𝑥) =
𝑒−𝑎𝑊3−𝑊

3𝑎𝑊3 + 𝑊 + 1
. 

The singularities of 𝑊′(3; 𝑎, 𝑥) are the zeros 

of the denominator 
3𝑎𝑊3 + 𝑊 + 1 = 0,          (2.2)

which are given by {𝑢1, 𝑢2, 𝑢3} where

𝑢1 =
1

3
{

−2
1
3

(−9𝑎2 + √4𝑎3 + 81𝑎4)
1
3

+
(−9𝑎2 + √4𝑎3 + 81𝑎4)

1
3

2
1
3𝑎

} ; 

𝑢2

=
1 + 𝑖√3

3 (2
2
3) (−9𝑎2 + √4𝑎3 + 81𝑎4)

1
3

−
(1 − 𝑖√3)(−9𝑎2 + √4𝑎3 + 81𝑎4)

1
3

6 (2
1
3) 𝑎

; 

𝑢3

=
1 − 𝑖√3

3 (2
2
3) (−9𝑎2 + √4𝑎3 + 81𝑎4)

1
3

−
(1 + 𝑖√3)(−9𝑎2 + √4𝑎3 + 81𝑎4)

1
3

6 (2
1
3) 𝑎

. 

The real root 𝑢1 is essential in determining the

real branches of the cubic Lambert 𝑊 function. 

We shall assume here that 𝑎 > 0. Note that 

when 𝑥 = 0, 𝑊(3; 𝑎, 0) = 0 and as 𝑥 → ∞, 

𝑦 → ∞.  

It can be verified using mathematica that 

𝑢1 < 0 ⟺ −
4

81
≤ 𝑎 < 0  &  𝑎 > 0. 

Now, equation (2.2) can be written as 
(𝑤 − 𝑢1)(𝑤 − 𝑢2)(𝑤 − 𝑢3) = 0
= (𝑤 − 𝑢1)(𝑤 − 𝑢2)(𝑤 − 𝑢2̅̅ ̅)

= (𝑤 − 𝑢1)(𝑤2 − 𝑤(𝑢2 + 𝑢2̅̅ ̅) + 𝑢2𝑢2̅̅ ̅),

since 𝑢3 = �̅�2. Thus, the function 𝑊(3; 𝑎, 𝑥)
is differentiable throughout ℝ except at 𝑊 =
𝑢1, that is at 𝑥 = 𝑓𝑎(𝑢1), where

𝑓𝑎(𝑢1) = 𝑢1𝑒𝑎𝑢1
3+𝑢1.

     The function has only two real branches 

which are separated by the line 𝑊 = 𝑢1. Note

that 𝑊(3; 𝑎, 0) = 0 and as 𝑥 → ∞, 
𝑊(3; 𝑎, 𝑥) → ∞. Also, if < 0, 𝑊(3; 𝑎, 𝑥) <
0. Thus, 𝑊(3; 𝑎, 𝑥) must be a strictly 

increasing function for 𝑊 > 𝑢1 and 𝑢1 < 0.

     Write 3𝑎𝑊3 + 𝑊 + 1 = (𝑊 − 𝑢1)𝑃,

where 𝑃 = 𝑊2 − 𝑊(𝑢2 + 𝑢2̅̅ ̅) + 𝑢2𝑢2̅̅ ̅. 𝑃 is
always positive as verified using 

mathematica. 

If 𝑊 < 𝑢1, then (𝑊 − 𝑢1) < 0. Since

𝑃 > 0, the derivative 𝑊′(3; 𝑎, 𝑥) < 0. Thus, 

𝑊(3; 𝑎, 𝑥) is strictly decreasing for 𝑊 < 𝑢1.

    Therefore, the two branches of 𝑊(3; 𝑎, 0) 

for 𝑎 > 0 are:  

𝑊0(3; 𝑎, 0): (𝑓𝑎(𝑢1), +∞) ⟶ (𝑢1, +∞)

which is a strictly increasing function, 

differentiable in the interior of its domain; 

𝑊1(3; 𝑎, 0): (−∞, 𝑓𝑎(𝑢1)) ⟶ (−∞, 𝑢1)

which is a strictly decreasing function, 

differentiable in the interior of its domain.  

Deriving the Taylor Series Expansion of 

Cubic Lambert Function 

Given the cubic Lambert function 𝑦 =
𝑊(3; 𝑎, 𝑥), its inverse function is given by 

𝑥 = 𝑓(𝑊) = 𝑊𝑒𝑎𝑊3+𝑊

By Lagrange Inversion Formula, we have 

𝑊(3; 𝑎, 0) = 𝑔(𝑥) 

= 𝑎 + ∑ 𝑔𝑛

(𝑥 − 𝑓(𝑎))
𝑛

𝑛!

∞

𝑛=1

CNU Journal of Higher Education, Volume 14 (2020)

This result is formally stated in the following 

theorem.  

Theorem 2.1. The cubic Lambert function y = 
W(3; a, x) has the following derivative 
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where 

𝑔𝑛 = lim
𝑤→𝑎

[
𝑑𝑛−1

𝑑𝑤𝑛−1
 (

𝑤 − 𝑎

𝑓(𝑤) − 𝑓(𝑎)
)]

𝑛

. 

Note that when 𝑎 = 0, 

𝑓(0) = 0𝑒𝑎(03)+0 = 0.

Hence, 

𝑊(3; 𝑎, 0) = 𝑔(𝑥)

= ∑
𝑥𝑛

𝑛!

∞

𝑛=1

lim 
𝑤→ 0

𝑑𝑛−1

𝑑𝑤𝑛−1
 (

𝑤

𝑤𝑒𝑎𝑤3+𝑤
)

𝑛

. 

Therefore, 

𝑊(3; 𝑎, 𝑥) = ∑
𝑥𝑘

𝑘!

∞

𝑘=1

lim 
𝑤→ 0

𝑑𝑘−1

𝑑𝑤𝑘−1  (
𝑤

𝑤𝑒𝑎𝑤3+𝑤
)

𝑘

𝑑𝑘−1

𝑑𝑤𝑘−1  (
𝑤

𝑤𝑒𝑎𝑤3+𝑤
)

𝑘

=
𝑑𝑘−1

𝑑𝑤𝑘−1 𝑒−𝑘(𝑎𝑤3+𝑤)

=
𝑑𝑘−1

𝑑𝑤𝑘−1 ∑
(−𝑘)𝑚(𝑎𝑤3 + 𝑤)𝑚

𝑚!

∞

𝑚=0

= ∑
(−𝑘)𝑚

𝑚!

∞

𝑚=0

𝑑𝑘−1

𝑑𝑤𝑘−1
(𝑎𝑤3 + 𝑤)𝑚

  = ∑
(−𝑘)𝑚

𝑚!

∞

𝑚=0

∑ (
𝑚
𝑖

)
𝑑𝑘−1

𝑑𝑤𝑘−1
(𝑎𝑤3)𝑖𝑤𝑚−𝑖 .

𝑚

𝑖=0

𝑑𝑘−1

𝑑𝑤𝑘−1 (
𝑤

𝑤𝑒𝑎𝑤3+𝑤
)|

𝑤=0

=    ∑
(−𝑘)𝑚

𝑚!

∞

𝑚=0

∑ (
𝑚
𝑖

) 𝑎𝑖

𝑚

𝑖=0

𝑑𝑘−1

𝑑𝑤𝑘−1
𝑤3𝑖+𝑚−𝑖|

𝑤=0

  = ∑ ∑
(−𝑘)𝑚

𝑚!
(

𝑚
𝑖

) 𝑎𝑖

𝑚

𝑖=0

∞

𝑚=0

𝑑𝑘−1

𝑑𝑤𝑘−1 𝑤2𝑖+𝑚|

𝑤=0

  = ∑ ∑
(−𝑘)𝑚

𝑚!
(

𝑚
𝑖

) 𝑎𝑖

𝑚

𝑖=0

∞

𝑚=0

(2𝑖

+ 𝑚)𝑘−1𝑤2𝑖+𝑚−(𝑘−1)|

𝑤=0

  = ∑
(−𝑘)𝑚

𝑚!

𝑘−1

𝑚=⌊
𝑘−1

3
⌋

(

𝑚
𝑘 − 𝑚 − 1

2
) 𝑎

𝑘−𝑚−1
2

× (𝑘 − 1)𝑘−1

  = ∑
(−𝑘)𝑚

𝑚!

𝑘−1

𝑚=⌊
𝑘−1

3
⌋

(

𝑚
𝑘 − 𝑚 − 1

2
) 𝑎

𝑘−𝑚−1
2

× (𝑘 − 1)! 

𝑊(3; 𝑎, 𝑥) 

= ∑
𝑥𝑘

𝑘!

∞

𝑘=1

∑
(−𝑘)𝑚

𝑚!

𝑘−1

𝑚=⌊
𝑘−1

3
⌋

(

𝑚
𝑘 − 𝑚 − 1

2
) 𝑎

𝑘−𝑚−1
2

× (𝑘 − 1)!  

𝑊(3; 𝑎, 𝑥) 

=
1

√𝑎
∑

(√𝑎𝑥)𝑘

𝑘

∞

𝑘=1

∑
(−𝑘/√𝑎)

𝑚

𝑚!

𝑘−1

𝑚=⌊
𝑘−1

3
⌋

(

𝑚
𝑘 − 𝑚 − 1

2
) 

We formally state the theorem as follows. 

Theorem 2.2. The Taylor series of the cubic 

Lambert W function around x = 0 is given by 

𝑊(3; 𝑎, 𝑥) 

=
1

√𝑎
∑

(√𝑎𝑥)𝑘

𝑘

∞

𝑘=1

∑
(−𝑘/√𝑎)

𝑚

𝑚!

𝑘−1

𝑚=⌊
𝑘−1

3
⌋

(

𝑚
𝑘 − 𝑚 − 1

2
). 

Integral of Cubic Lambert Function 

    Taking the derivative of both sides of 

equation (2.1) gives 

𝑑𝑥 = 𝑦𝑒𝑎𝑦3+𝑦 (3𝑎𝑦2 + 1) 𝑑𝑦

+ 𝑒𝑎𝑦3+𝑦  𝑑𝑦

= 𝑒𝑎𝑦3+𝑦 (3𝑎𝑦3 + 𝑦 + 1) 𝑑𝑦

With 𝑦 = 𝑊(3; 𝑎, 𝑥), we have 

∫ 𝑊(3; 𝑎, 𝑥)𝑑𝑥 = ∫ 𝑦 𝑑𝑥 

= ∫ 𝑦(𝑒𝑎𝑦3+𝑦)(3𝑎𝑦3 + 𝑦 + 1) 𝑑𝑦

= ∫(3𝑎𝑦4 + 𝑦2 + 𝑦)𝑒𝑎𝑦3+𝑦 𝑑𝑦

= ∫(3𝑎𝑦4 + 𝑦2)𝑒𝑎𝑦3+𝑦 𝑑𝑦 + ∫ 𝑦𝑒𝑎𝑦3+𝑦 𝑑𝑦

= ∫ 𝑦2𝑒𝑎𝑦3+𝑦(3𝑎𝑦2 + 1) 𝑑𝑦 + ∫ 𝑦𝑒𝑎𝑦3+𝑦 𝑑𝑦

= 𝐼1 + 𝐼2

Solving 𝐼1 using integration by parts, with

𝑢 = 𝑦2 and

𝑑𝑣 = 𝑒𝑎𝑦3+𝑦(3𝑎𝑦2 + 1) 𝑑𝑦.

Corcino, Mezo, Corcino and Gaspin: The Cubic Lambert W Function
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= 𝑦2𝑒𝑎𝑦3+𝑦 − ∫ 2𝑦𝑒𝑎𝑦3+𝑦𝑑𝑦 + 𝐶

Thus, we obtain  

∫ 𝑊(3; 𝑎, 𝑥)𝑑𝑥 = 𝐼1 + 𝐼2

= 𝑦2𝑒𝑎𝑦3+𝑦 − ∫ 𝑦𝑒𝑎𝑦3+𝑦 𝑑𝑦

Using the Taylor series expansion of 

𝑦𝑒𝑎𝑦3+𝑦, we can integrate term by term to

find a series representation of the 

antiderivative which converges on the entire 

complex plane, since 𝑒𝑎𝑦3+𝑦  is an entire

function. Thus, we have 

∫ 𝑦𝑒𝑎𝑦3+𝑦 𝑑𝑦 = ∑
1

𝑛!
∫ 𝑦(𝑎𝑦3 + 𝑦)𝑛𝑑𝑦

𝑛≥0

 = ∑
1

𝑛!
∑ (

𝑛

𝑘
) 𝑎𝑘 ∫ 𝑦2𝑘+𝑛+1𝑑𝑦

𝑛

𝑘=0𝑛≥0

 = ∑
1

𝑛!
∑ (

𝑛

𝑘
) 𝑎𝑘

𝑦2𝑘+𝑛+2

2𝑘 + 𝑛 + 2

𝑛

𝑘=0𝑛≥0

+ 𝐶.

It follows that 

∫ 𝑊(3; 𝑎, 𝑥)𝑑𝑥 = 𝑦2𝑒𝑎𝑦3+𝑦

− ∑ ∑ (
𝑛

𝑘
)

𝑎𝑘

𝑛!

𝑦2𝑘+𝑛+2

2𝑘 + 𝑛 + 2

𝑛

𝑘=0𝑛≥0

+ 𝐶.

Then, we have 

Theorem 2.3. The integral of cubic Lambert 

W function has the following Taylor series 

expansion 

∫ 𝑊(3; 𝑎, 𝑥) 𝑑𝑥 

= 𝑊2(3; 𝑎, 𝑥)𝑒𝑎𝑊3(3;𝑎,𝑥)+𝑊(3;𝑎,𝑥)

− ∑ ∑ (
𝑛

𝑘
)

𝑎𝑘

𝑛!

[𝑊(3; 𝑎, 𝑥)]2𝑘+𝑛+2

2𝑘 + 𝑛 + 2

𝑛

𝑘=0𝑛≥0

+ 𝐶.

THE MELLIN TRANSFORMATION OF 

CUBIC LAMBERT FUNCTION  

     The Mellin transformation is one of the 

special cases of integral transformations. 

If 𝑊(3; 𝑎, 𝑥) is the solution to the 

equation 𝑦𝑒𝑎𝑦3+𝑦 = 𝑥, then its Mellin

transform is given by 

(ℳ𝑊(3; 𝑎, 𝑥))(𝑠) 

= ∫ 𝑡𝑠−1𝑊(3; 𝑎, 𝑡)  𝑑𝑡

∞

0

. 

Letting  𝑢 = 𝑊(3; 𝑎, 𝑡). Then, we have 

𝑢𝑒𝑎𝑢3+𝑢 = 𝑡.

Applying implicit differentiation, yields 

𝑢𝑒𝑎𝑢3+𝑢(3𝑎𝑢2 + 1) 𝑑𝑢 + 𝑑𝑢 𝑒𝑎𝑢3+𝑢 = 𝑑𝑡

𝑒𝑎𝑢3+𝑢(3𝑎𝑢3 + 𝑢 + 1)𝑑𝑢 = 𝑑𝑡.

Thus, 

(ℳ𝑊(3; 𝑎, 𝑥))(𝑠) 

= ∫(𝑢𝑒𝑎𝑢3+𝑢)
𝑠−1

𝑢 𝑒𝑎𝑢3+𝑢(3𝑎𝑢3 + 𝑢

∞

0

+ 1) 𝑑𝑢

= ∫(𝑢𝑒𝑎𝑢3+𝑢)
𝑠
(3𝑎𝑢3 + 𝑢 + 1) 𝑑𝑢

∞

0

= ∫ 𝑢𝑠𝑒𝑠(𝑎𝑢3+𝑢)(3𝑎𝑢3 + 𝑢 + 1) 𝑑𝑢

∞

0

= ∫{3𝑎𝑢𝑠+3𝑒𝑠(𝑎𝑢3+𝑢)

∞

0

+𝑢𝑠+1𝑒𝑠(𝑎𝑢3+𝑢) + 𝑢𝑠𝑒𝑠(𝑎𝑢3+𝑢) }𝑑𝑢

= 3𝑎 ∫ 𝑢𝑠+3𝑒𝑠(𝑎𝑢3+𝑢) 𝑑𝑢

∞

0

+ ∫ 𝑢𝑠+1𝑒𝑠(𝑎𝑢3+𝑢) 𝑑𝑢

∞

0

+ ∫ 𝑢𝑠𝑒𝑠(𝑎𝑢3+𝑢) 𝑑𝑢

∞

0

. 

Then, we have  𝑑𝑢 = 2𝑦𝑑𝑦  and  𝑣 =
𝑒𝑎𝑦3+𝑦.  Hence,

𝐼1 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

4
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Thus, the Mellin transform of 𝑊(3; 𝑎, 𝑥) is 

(ℳ𝑊(3; 𝑎, 𝑥))(𝑠) 

= 3𝑎 {
1

6
 𝑠(−𝑎𝑠)

−8−𝑠
3 [−2𝑎(−𝑎𝑠)

1
3 H1  + 2𝑎𝑠 𝐻2  

+ 𝑠(−𝑎𝑠)
2
3 𝐻3]}

+
1

6
 (−𝑎𝑠)

−4−𝑠
3 [2(−𝑎𝑠)

2
3 H4

+ 2𝑠(−𝑎𝑠)
1
3 𝐻5  + 𝑠2 𝐻6]

+
1

6
(−𝑎𝑠)

1
3

(−2−𝑠) [2𝑎(−𝑎𝑠)
1
3 H7

+ 2𝑎𝑠 𝐻8 − 𝑠(−𝑎𝑠)
2
3 𝐻9]

where 

H1 = Γ (
4 + s

3
) 𝐹21

 (
4 + 𝑠

3
;

1

3
,
2

3
;
−𝑠2

27𝑎
) 

H2 = Γ (
5 + s

3
) 𝐹21

 (
5 + 𝑠

3
;

2

3
,
4

3
;
−𝑠2

27𝑎
) 

H3 = Γ (
6 + 𝑠

3
) 𝐹21

 (
6 + 𝑠

3
;

4

3
,
5

3
;
−𝑠2

27𝑎
) 

H4 = Γ (
2 + s

3
) 𝐹21

 (
2 + 𝑠

3
;

1

3
,
2

3
;
−𝑠2

27𝑎
) 

H5 = Γ (
3 + s

3
) 𝐹21

 (
3 + 𝑠

3
;

2

3
,
4

3
;
−𝑠2

27𝑎
) 

H6 = Γ (
4 + 𝑠

3
) 𝐹21

 (
4 + 𝑠

3
;

4

3
,
5

3
;
−𝑠2

27𝑎
) 

H7 = Γ (
1 + s

3
) 𝐹21

 (
1 + 𝑠

3
;

1

3
,
2

3
;
−𝑠2

27𝑎
) 

H8 = Γ (
2 + s

3
) 𝐹21

 (
2 + 𝑠

3
;

2

3
,
4

3
;
−𝑠2

27𝑎
) 

H9 = Γ (
3 + 𝑠

3
) 𝐹21

 (
3 + 𝑠

3
;
4

3
,
5

3
;
−𝑠2

27𝑎
) 

𝑠 > 1 and 

𝑝𝐹𝑞(𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑧)

= 1 +
𝑎1⋯𝑎𝑝

𝑏1⋯𝑏𝑞

𝑧

1!
+

𝑎1(𝑎1+1)⋯𝑎𝑝(𝑎𝑝+1)

𝑏1(𝑏1+1)⋯𝑏𝑞(𝑏𝑞+1)

𝑧2

2!
+ ⋯

is the generalized hypergeometric function. 

Application to Nonlinear Differential 

Equations 

Consider the nonlinear differential equation 

𝑇
𝑑𝑥

𝑑𝑡
= 𝑏 − 𝑥𝑒𝑎𝑥3+𝑥,  (4.1) 

where 𝑇 represents temperature, 𝑎, 𝑏 are 

constants, 𝑏 ≠ 0. We shall solve (4.1) by 

perturbation of the solution from the fixed 

point 𝑥∗. Let

𝑓(𝑥) = −
1

𝑇
𝑥𝑒𝑎𝑥3+𝑥 +

𝑏

𝑇
 .  (4.2) 

Then (4.1) can be written 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥).  (4.3) 

We say that 𝑥∗ is a fixed point, or

equilibrium point of (4.3) if 𝑓(𝑥∗) = 0
(Chasnov, 2019). Solving for 𝑥∗, set 𝑓(𝑥) =
0. Then

−
1

𝑇
𝑥𝑒𝑎𝑥3+𝑥 +

𝑏

𝑇
= 0 

𝑥𝑒𝑎𝑥3+𝑥 = 𝑏.

That is, 
𝑥 = 𝑊(3; 𝑎, 𝑏) = 𝑥∗.   (4.4) 

The perturbation method can be done as 

follows: Let  

𝑥 = 𝑥∗ + 𝜀(𝑡).  (4.5) 

Because 𝑥∗ is constant,

𝑑𝑥

𝑑𝑡
=

𝑑𝜀(𝑡)

𝑑𝑡
. 

We use the notation 

�̇� =
𝑑𝑥

𝑑𝑡
. 

Then, (4.5) becomes �̇� = 𝜀̇. Taylor series 

expansion about 𝜀 = 0 yields 

𝜀̇ = 𝑓(𝑥∗ + 𝜀) 
= 𝑓(𝑥∗) + 𝜀𝑓′(𝑥∗) + ⋯
= 𝜀𝑓′(𝑥∗) + ⋯

    The omitted term in the Taylor Series 

expansion is 𝑂(𝜀2) and can be negligible by

taking 𝜀(0) sufficiently small. Therefore, at 

least over short times the differential equation 

to be considered is  

𝜀̇ = 𝑓′(𝑥∗)𝜀

which has the familiar solution 

𝜀(𝑡) = 𝜀(0)𝑒𝑓′(𝑥∗)𝑡.
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We have seen in (4.4) that we only have one 

fixed point for specific values of 𝑎, 𝑏. Thus, 

𝑥 = 𝑥∗ + 𝜀(0)𝑒𝑓′(𝑥∗)𝑡.

The derivative 𝑓′(𝑥∗) is given by

𝑓′(𝑥∗) = −
𝑏

𝑇
(3𝑎[𝑊(3; 𝑎, 𝑏)]2 +

1

𝑊(3; 𝑎, 𝑏)
). 

Using (4.5), 𝜀(0) = 𝑥0 − 𝑥∗, consequently,

𝑥 = 𝑊(3; 𝑎, 𝑏) + (𝑥0 − 𝑊(3; 𝑎, 𝑏))𝐸

where 

𝐸 = exp (−
𝑏𝑡

𝑇
(3𝑎[𝑊(3; 𝑎, 𝑏)]2

+
1

𝑊(3; 𝑎, 𝑏)
)). 

Note that for 𝑏 > 0, 𝑊(3; 𝑎, 𝑏) > 0 as can be 

seen in the discussion of the branches of the 

function. Thus, for 𝑇 > 0 and 𝑏 >
0, 𝑓′(𝑥∗) < 0 which means that the fixed

point is stable. 
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