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ABSTRACT 

     The NASA’s GISTEMP Team temperature anomaly data from year 1880-2015 has undergone 

two different data treatments: 5-year moving average and second-generation data. Together with the 

untreated data, the log-log plot of mean square displacement (MSD) of temperature anomaly versus 

time was derived.  Since it showed a linear response, fractional Brownian motion (fBM), which was 
derived using white noise analysis was shown.  The fBM with Hurst exponent, H = 1 was then used 

as a fit to the MSD of temperature anomaly which implied super-diffusion.   It must be pointed out 

that the upper bound of the H index is the condition necessary for the chosen memory function 

rendering the best fit to the temperature anomaly.  Considering that global temperature follows a 
natural cycle when unperturbed, this anomalous behavior can be attributed to a driving force in the 

time evolution of the temperature anomaly. These ‘forces’ may be attributed to both the natural 

heating cycle in the Earth’s surface and human activities particularly on technological changes and 

innovations which already begun even before the 1880s. 
Keywords: temperature anomaly, white noise analysis, mean square displacement, fractional   

  Brownian motion, Hurst exponent 

INTRODUCTION 

      Greenhouse effect is a natural occurrence 

that maintains the Earth’s average temperature. 

Without it, temperatures with be much lower 

compared today and the existence of life would 

not be possible. This is possible because of 

greenhouse gases that occur naturally: Carbon 

dioxide, methane, water vapor and nitrous 

oxide (Global Climate change, 2013). 

Nonetheless, the increase of greenhouse gases 

increases the greenhouse effect, which thereby 

increases the mean global temperatures as well 

as changes in precipitation patterns (Enzler, 

2013). As a result, a net climate change will 

occur when there are changes in weather 

patterns in an area over a long period of time. 

These gradual changes in climate allow plants, 

animals and microorganisms to evolve and 

adapt to the new temperature of the 

environment (Global Climate change, 2013).  

     However, since the start of the first decade 

of the 21st century, the change is rapidly 

occurring which is the real threat of climate 

change. Since 1900, global temperatures have 

increased by 0.8 C. Aside from that, more 

evidences suggest that the mean global 

temperature increases at a rate of 0.4 F each 

decade (Global Climate change, 2013). The 

temperature, as one of the influencing 

parameters to changes in weather patterns, may 

be treated as a stochastic variable that may not 

seem to exhibit random pattern but rather a 

behavior with a memory of its past. Given that, 

a memory function may be extracted from the 

time series data of temperature anomaly. This 

may then be used to predict future trends of the 

increases of the surface temperature and for 

future mitigation and policy development. 

Temperature Anomaly Time Series Data 

      Temperature anomaly is the difference 

from an average or baseline temperature, 

which is computed by averaging at least 30 

years of temperature data. In the context of 

climate change, it is a more important term than 

the absolute temperature. This is because of the 

presence of some factors that may lead to 

problems when stations are added, removed, or 

missing from the monitoring network [Stock, 
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2015]. Some of these factors include station 

location or elevation that will have an influence 

on the temperature. Aside from that, some 

regions have fewer stations for the 

measurement of temperature, e.g., Sahara 

Desert. By using temperature anomaly instead, 

this effect is less critical (Stock, 2015; Hansen, 

2016).  

      The temperature anomaly is used as a 

diagnostic tool to give scientist a big picture 

overview since it is a global scale data. In fact, 

this data is used for the analyses of global 

surface temperature change by several groups 

such as the NASA Goddard Institute for Space 

Studies, the NOAA National Climatic Data 

Center (NCDC), and a joint effort of the UK 

Met Office Hadley Centre and the University 

of East Anglia Climatic Research Unit 

(HadCRUT) (Hansen, 2010).  

Figure 1. Plot of Temperature Anomaly from 1880 

– 2015. A positive anomaly indicates that the

observed temperature was warmer than the baseline.

On the other hand, a negative anomaly indicates that

the observed temperature was cooler than the

baseline.

     The annual global temperature anomaly 

data (GISTEMP Team, 2021; Lenssen et al., 

2019) are available from the year 1880 up to 

2015. This is shown in Figure 1. A positive 

anomaly signifies that the observed 

temperature was warmer than the baseline. On 

the other hand, a negative anomaly indicates 

that the observed temperature was cooler than 

the baseline temperature. 

     The data is subjected to different data 

treatment such as the second-generation data 

and moving average. To get the second-

generation data, the temperature anomaly is 

fitted with a polynomial with n-degree using 

Matlab software. The polynomial fit that gives 

the highest chi-square is the degree 4. The 

temperature anomaly data points are then 

subtracted by the poly-4 fit, which generates 

the second-generation data.  This is shown in 

Figure 2. 

Figure 2. Plot of second-generation data derived from 

the Temperature Anomaly being subtracted by the 

poly-4 fit.  

     The mean square displacement of the 

temperature anomaly, which is the deviation 

from the mean, was also derived. This is done 

for the three different data sets (untreated, 

moving average and second-generation data). 

This is shown in Figure 3. We will then look at 

the memory function embedded in each data 

set, which will be discussed in the next two 

sections. 
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Figure 3. log-log MSD plots of the (a) untreated Temperature Anomaly, (b) Temperature 

anomaly in 5-year moving average and (c) Second-generation Temperature anomaly  

White Noise Analysis 

     A stochastic random variable x(t) with no 

memory of its past can be written as the sum of 

its initial point x0 and some Wiener process B(t) 

(Bernido & Carpio-Bernido, 2012), 

 𝑥(𝑡) = 𝑥0 + 𝐵(𝑡),  (1) 

where 𝐵(𝑡) = ∫ 𝜔(𝑡)𝑑𝑡 , where 𝜔(𝑡)  is a 

random white noise variable. It is important to 

note in Equation (1) that the initial point is 

fixed at 𝑥0  and the endpoint could be

anywhere. A mathematical technique to deal 

with this dilemma is the use of a delta function, 

which can be written as 𝛿(𝑥(𝑇) − 𝑥𝑇) . One

can then find the probability density function 

as the integral of the delta function over the 

gaussian white noise measure 𝑑𝜇𝜔 (Bernido &

Carpio-Bernido, 2012) 

 𝑃(𝑥𝑇, 𝑇; 𝑥0, 0) = ∫ 𝛿(𝑥(𝑇) − 𝑥𝑇) 𝑑𝜇𝜔 ,   (2) 

However, several natural phenomena do not 

seem to fit randomness behavior as given by 

the Brownian motion in Eq. (1). Thus, to 

extend the applicability to a more dynamic 
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evolution of real-world phenomena, a memory 

function 𝑓(𝑇 − 𝑡)  is added to the menu to 

allow the path 𝑥(𝑡) to have a memory of its 

past. The parametrization of the path will now 

be written as (Bernido and Carpio-Bernido, 

2015) 

 𝒙(𝑻) = 𝒙𝟎 + ∫ 𝒇(𝑻 − 𝒕)𝒉(𝒕)
𝑻

𝒐
𝝎(𝒕)𝒅𝒕,    (3) 

Using Eq (2), the probability density function 

can then be written as 

 (4) 

employing the Fourier representation of the 

delta function (Bernido and Carpio-Bernido, 

2015) 
 (5)

Now, we make use of the characteristic 

functional given by (Bernido & Carpio-

Bernido, 2012) 
 (6) 

Hence, the probability density function can be 

expressed as 
.   (7) 

Equation (7) is just a Gaussian integral and can 

be evaluated easily to get the final expression 

of the probability density as (Bernido and 

Carpio-Bernido, 2015) 

𝑷(𝒙𝑻, 𝑻; 𝒙𝟎, 𝟎) = √
𝟏

𝟐𝝅 [∫ 𝒇(𝑻 − 𝒕)𝒉(𝒕)
𝑻

𝒐
𝒅𝒕]

𝟐 𝐞𝐱𝐩 [
−(𝒙𝟎 − 𝒙𝑻)𝟐

𝟐 ∫ [𝒇(𝑻 − 𝒕)𝒉(𝒕)]𝟐𝑻

𝒐
𝒅𝒕

].  

The mean square displacement (MSD), which 

measures the deviation from the mean, can be 

calculated by 

𝑴𝑺𝑫 = 〈(𝒙 − 〈𝒙〉)𝟐〉 = 〈𝒙𝟐〉 − 〈𝒙〉𝟐    (9) 

To get the mean square displacement, one 

must be able to solve for the first moment and 

second moment: 〈𝑥〉  and 〈𝑥2〉. To do this, we

have to evaluate 

〈𝒙〉 = ∫ 𝒙
+∞

−∞

𝑷(𝒙𝑻, 𝑻; 𝒙𝟎, 𝟎)

and 

〈𝒙𝟐〉 = ∫ 𝒙𝟐
+∞

−∞

𝑷(𝒙𝑻, 𝑻; 𝒙𝟎, 𝟎). 

The first moment with Equation (8) would lead 

us to a Gaussian integral that can be easily 

evaluated which gives 〈𝑥〉 = 𝑥0. On the other

hand, the second moment can be evaluated as 

(Bernido and Carpio-Bernido, 2015) 

〈𝒙𝟐〉 = 𝒙𝟎
𝟐 + ∫ [𝒇(𝑻 − 𝒕)𝒉(𝒕)]𝟐𝑻

𝒐
𝒅𝒕. 

Thus, Equation (7) gives (Bernido and Carpio-

Bernido, 2015) 

𝑴𝑺𝑫 = ∫[𝒇(𝑻 − 𝒕)𝒉(𝒕)]𝟐

𝑻

𝒐

𝒅𝒕    (10)

Equation (8) is now the general form of the 

mean square displacement of any system with 

a unique form of memory function 𝑓(𝑇 − 𝑡) 

and ℎ(𝑡). 

Fractional Brownian Motion (fBM) and the 

MSD of Temperature Anomaly 

    Fractional Brownian motion have the 

following memory function (Bernido and 

Carpio-Bernido, 2015) 

𝒇(𝑻 − 𝒕) =
(𝑻 − 𝒕)𝑯−𝟏 𝟐⁄

𝚪(𝑯 + 𝟏 𝟐⁄ )
 (11)

where ℎ(𝑡) = 1, and H is the Hurst exponent 

(0<H<1). The Hurst index can be attributed to 

normal diffusion or ordinary Brownian motion 

(H = 1/2), subdiffusion (0 < H < 1/2) or, 

superdiffusion (1/2 < H < 1) [1]. With this 

choice of the memory function, the probability 

density function in Equation (8) becomes 

𝑷(𝒙𝑻, 𝑻; 𝒙𝟎, 𝟎) =
√𝚪𝟐 (𝑯 +

𝟏
𝟐) 𝑯

𝝅𝑻𝟐𝑯
𝐞𝐱𝐩 [−

𝑯𝚪𝟐 (𝑯 +
𝟏
𝟐) (𝒙𝟎 − 𝒙𝑻)𝟐

𝑻𝟐𝑯
].    (12)

Using Equations (10) and (11), its mean square 

displacement can be obtained to yield (Bernido 

and Carpio-Bernido, 2015) 

𝐌𝐒𝐃 = ∫[𝒇(𝑻 − 𝒕)𝒉(𝒕)]𝟐

𝑻

𝒐

𝒅𝒕 = 𝒄𝑻𝜶,  (13) 
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where 𝛼 = 2𝐻 and 𝑐 =
1

2𝐻Γ2(𝐻+
1

2
)
. Taking the 

logarithm of both sides of Equation (13), would 

arrive at a linear equation given by 

  log(MSD) = logc + log(𝑇2𝐻) = 2𝐻log(T) + logc,    (14) 

where the slope of this line is 2𝐻  and its 

intercept is log (c). Now, we can use Equation 

12 with Hurst exponent H = 1, to fit the linear 

log-log plot of the MSD of temperature 

anomaly together with the 5-year moving 

average and the second-generation data of 

temperature anomaly shown in Figure 3. The 

result is shown in Figure 4. 

     As shown in Figure 4, both the treated and 

untreated data for temperature anomaly 

behaves linearly, almost having no difference 

at all. Aside from that, the three different data 

sets fit the fractional Brownian motion with 

Hurst exponent, H = 1. As mentioned 

previously, a Hurst exponent whose value can 

be found between 0.5 to 1.0 is attributed to 

superdiffusion.  Most of the Brownian motion 

experiments and simulations in super diffusive 

regimes have been attributed to a force as given 

by the Langevin model (Despósito, 2011; 

Duplat et al., 2013). Using this idea to our case, 

the time-evolution of the temperature anomaly 

is driven by a force that can be traced back to 

anthropogenic effects on global warming and 

climate change. This is in agreement with 

(Vassoler et al., 2012) when they cited that 

most of the roots of global warming is caused 

by human activities, as well as, El Niño and La 

Niña, which are natural phenomena. Aside 

from that, (Enzler, 2013) cited that these 

human activities could warm the Earth by 

releasing carbon dioxide to the atmosphere. 

This is because increasing concentrations of 

atmospheric carbon dioxide resulted to 

increased infrared radiation absorption. 

Moreover, the Hurst exponent, H, being equal 

to 1 (boundary of the Hurst index in 

superdiffusion) can be attributed to the fact that 

the temperature anomaly data started 1880 and 

ended up to 2015. Human activities in relation 

to the warming of the Earth have high impact 

during this whole duration. In particular, the 

year 1880 happened to be following the so-

called second Kondratiev wave, which began 

between about 1850 and 1870 (Bridgstock, 

1998). This cycle of innovation in human 

history consisted mostly of the production of 

railways which swept across Europe and the 

United States. Furthermore, the first of such 

wave of innovations and technological change 

is the Industrial revolution itself during the 

latter part of eighteenth century. This cycle 

involves innovations in industries such as coal, 

iron and mining (Bridgstock, 1998). 

 a  b 
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Figure 4. Mean Square displacement (MSD) of the (a) untreated Temperature 

Anomaly (TA), (b) 5-year moving average of TA and (c) second-generation 

temperature anomaly fitted with fractional Brownian motion (fBM) with 

Hurst exponent, H = 1. 

CONCLUSION AND RECOMMENDATION 

      In this paper, the temperature anomaly data 

from year 1880-2015 has undergone two 

different data treatments: 5-year moving average 

and second-generation data. The second-

generation data was obtained by subtracting the 

temperature anomaly data by the data points 

generated from a fit using polynomial of degree 

4. Together with the untreated data, the log-log

plot of mean square displacement (MSD) of

temperature anomaly versus time was derived.

The MSD, as shown in Figure 3, behaves linearly

which could imply a fractional Brownian motion

memory. Following the steps in white noise

analysis (Bernido & Carpio-Bernido, 2012), the

fractional Brownian motion memory function

was used to derive its probability density

function, as well as the MSD. Then, the logarithm

of both sides of the obtained MSD was done to

express it in linear form. The fBM with Hurst

exponent, H = 1 was then used as a fit to the MSD

of temperature anomaly which implies super-

diffusion. Considering that global temperature

follows a natural cycle when unperturbed, this

anomalous behavior can be attributed to a driving

force in the time evolution of the temperature

anomaly. These ‘forces’ may be attributed to both

the natural heating cycle in the Earth’s surface

and human activities particularly on

technological changes and innovations which 

already begun even before the 1880s. 

      It is recommended that a more convincing 

statistical tool can be used in fitting of the MSD 

with the fractional Brownian motion with the 

Hurst exponent, e.g., p-value or chi-square. 
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