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ABSTRACT 

In this study, we confirmed the Flory index formula via 

numerical calculation in two dimensions using Monte Carlo 

methods and the Metropolis algorithm. Results revealed that the 

simulation in two dimensions is successful in confirming the Flory 

index formula for short polymers. In addition, using a small value 

of 𝑔 which is the penalizing factor to avoid self-crossing within 

polymers, the simulated value of Flory index agrees with the 

theoretical prediction. However, when simulating beyond 𝑁 =
200 monomers, significant outliers of the result which cause a 

great mismatch of the simulated and theoretical values of the Flory 

index are observed. Results showed from the simulation that the 

Flory index holds true for short polymers or N, number of 

monomers below 300. It is recommended that in future work of 

this research, the coupling constant 𝑔 must be slowly increased 

from zero until the result will eliminate the outliers and stabilize 

the scaling index. 

Keywords: fractional Brownian motion, Monte Carlo methods, 

polymer modeling, Flory index 

 INTRODUCTION 

     Many studies have been 

intensively done in understanding and 

unlocking the mystery behind the 

mechanical properties of polymers. 

Polymers such as DNA, proteins and 

enzymes capture the interest of many 

biophysicists and other related fields. 

DNA for example, exhibits several 

deformations such as twisting, coiling 

and stretching inside a micron-size 

nucleus of a cell. Each deformation, 

which in turn determines its specific 

conformation, greatly affects and 

influences its biological functions 

(Zhou Haijun, et. al., 2000). 

Nowadays, having the knowledge of 

DNA's stretching and twisting allows 

one to study its biological processes 

such as replication and transcription 

(Bustamante, et. al., 2000). 

CNU Journal of Higher Education
Volume 15 (2021), p 26-33



Theoretically, probing its mechanical 

properties have been made possible 

through the use of various model, i.e. 

Wormlike Chain (WLC) model  that 

can realistically describe its 

characteristics analytically (Bouchiat, 

et. al., 1999). In the WLC model, its 

``path" is treated to be Brownian 

motion in nature, see the paper 

(Allison, 1986). That is, its correlation 

between two successive point in 

question is always zero (Karatzas, et. 

al., 2012). In other words, each 

successive points of the polymer is 

independent from each other. 

However, when one looks at these 

polymers in vitro, it is less likely to be 

observed as Brownian motion. The 

polymer will either be in extended or 

compact form. Thus, the polymer 

tends to have an interaction with each 

of the subunits or monomers or a 

Brownian motion with memory in 

mathematical terms.  Hence, a 

generalization of the Brownian 

motion which is termed as the 

Fractional Brownian motion was 

developed in describing polymer 

properties. This endeavor has been 

one of the great interests especially in 

the field of polymer physics. This 

concept of fractional Brownian 

motion is now used in analyzing the 

probability distribution of the end-to-

end distance and radius of gyration of 

polymers (McCrackin, et. al., 1973). 

Generally, knowing these two 

properties significantly contributes to 

the understanding of the mechanical 

properties of the polymer. 

Coincidentally, these properties, the 

radius of gyration and end-to-end 

distance, can be approximated using 

the Flory's mean field approach which 

yield a scaling index of 𝑁𝜈, where 𝑁
and 𝜈 are the number of bond 

segments and Flory index 

respectively (De Gennes, 1979). In 

the paper of Bornales, et. al., the Flory 

index in Brownian motion can then be 

theoretically generalized in its 

fractional Brownian form. However, 

proving this generalized Flory index 

in closed form is cumbersome and 

challenging as of now. Thus, a 

numerical calculation will be a viable 

approach in getting a concrete answer 

if one wants to validate the 

correctness of the said generalization 

of the Flory index. Therefore, it is the 

goal of this study to evaluate the 

validity of the generalized Flory index 

by comparing it with our numerical 

calculation using Monte Carlo 

method.  

 Fractional Brownian Motion 

The Edward’s model 

Fractional Brownian motion, 𝐵𝐻,

is a generalization of Brownian 

motion where 𝐻 runs from 0 to 1, is 

the Hurst parameter. This parameter 

ultimately describes the correlation of 

each of the points in the path of the 

polymer. This so-called correlation is 

expressed in its covariance function 

as 
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 (1) 

    It is interesting to note in this case 

that when 𝐻 = 0.5, it reduces to 

Brownian motion. Because of this 

property of fractional Brownian 

motion, one can fundamentally apply 

its concept in modeling polymer 

interaction and conformations. Single 

chain polymer, which is considered to 

be a Gaussian chain, exhibits a 

characteristic of an excluded volume 

effect. This effect is accountable for 

the polymer entanglement or 

swelling. Mathematically, one can 

describe it using the Edward’s model 

(Wolfgang, et. al., 2013). In this 

particular model, self-crossing is 

suppressed by introducing the factor 

exp(−𝑔𝐿) (1) 

where 𝑔 is the coupling constant and 

𝐿 is the self-intersection local time 

vented as 

𝐿 = ∫ ∫ 𝑑𝑠𝑑𝑡𝛿(𝐵(𝑠) − 𝐵(𝑡)). (2) 

In this case of fractional Brownian 

motion, this Gaussian chain can then 

be generalized as 

𝐿𝐻 = ∫ ∫ 𝑑𝑠𝑑𝑡𝛿(𝐵𝐻(𝑡) − 𝐵𝐻(𝑡)), (3) 

So that the probability density of a 

given polymer is given as 

𝜌𝐻 ~ exp (−
1

2
(𝑥, 𝐴−1, 𝑥) − 𝑔𝐿𝐻) (4) 

 Where 𝐴 is the inverse matrix of the 

covariance function calculated in Eq. 

[1]. 

The Flory Index 

      A partition function 𝑍(𝑅) for a 

freely jointed chain of 𝑁 segments for 

which the end-to-end length has fixed 

modulus 𝑅 is given by 

𝑍(𝑅) = 𝑎𝑅𝑑−1 exp (−
𝑑𝑅2

2𝑁
), (5) 

and leads to a free energy 

𝐹1 = − ln 𝑍 ≈
𝑑𝑅2

2𝑁
− (𝑑 − 1) ln 𝑅. (6) 

Instead of such chain a continuous 

model is that of a Brownian trajectory 

from time zero to time 𝑁 for which 

one computes to 

𝔼(𝛿(𝐵(𝑁) − R)) = (2𝜋𝑁)−𝑑/2 exp (−
𝑅2

2𝑁
) . (7) 

For the fBm case this formula 

generalizes to  
 (9) 

From which we see that 𝑁 → 𝑁2𝐻,

and hence we should consider 

𝑍(𝑅) = 𝑎𝑅𝑑−1 exp (−
𝑑𝑅2

2𝑁2𝐻
) (8) 

i.e. 

𝐹1 = − ln 𝑍 ≈
𝑑𝑅2

2𝑁2𝐻
− (𝑑 − 1) ln 𝑅.(9)

For the repulsive excluded volume 

energy of fBm paths 𝑥 with 𝑥(𝑁) =
R, 

Maglasang, Casas and Elnar: Numerical Calculation of Polymer Modeling 
28



 (12) 

Dimensional considerations and 

mean field arguments suggest that  

𝐹2 ≈ const
𝑁2

𝑅𝑑
(10) 

Maximizing 

𝐹(𝑁, 𝑅) = 𝐹1(𝑁, 𝑅) + 𝐹2(𝑁, 𝑅) (11) 

with regard to 𝑅 leads to 

 (15) 

Assuming that the 2nd term is 

negligible one finds 

𝑅𝑑+2 ≈ 𝑁2𝐻+2 (12) 

i.e. 
𝑅 ≈ 𝑁𝜈𝐻 (13) 

with 

𝜈𝐻(𝑑) =
2𝐻 + 2

𝑑 + 2
(14) 

Monte Carlo Simulation of the 

Generalized Flory index using 

Matlab software 

     This paper numerically derives 

and validates the generalized Flory 

index and compares it in theory using 

Monte Carlo simulation via Matlab 

software. That is, we want to know 

the scaling component 𝜈, which is the 

Flory index in the case of fractional 

Brownian motion. In the simulation 

process, we used the Metropolis 

algorithm that is fed into the Matlab 

software. We keep in mind that the 

main goal of the study is to determine 

the scaling exponent (Flory index) of 

an end-to-end distance in the light of 

fractional Brownian motion. The 

generalized Flory index is expressed 

as 

𝜈𝐻 =
2𝐻 + 2

𝑑 + 2
(15) 

Proving the validity of the above 

expression is carried out through 

computer simulation using Monte 

Carlo sampling. 

Metropolis Algorithm 

We discretized the fractional random 

walk with non-self-crossing using 

Monte Carlo methods based on the 

Metropolis algorithm. The 

Metropolis algorithm is used to 

update the bonds or the increments of 

each path of the polymer. Initially, we 

introduce a random polymer 

configuration of Hurst index, 𝐻 given 

as 
𝑥𝑗 = 𝐵𝐻(𝑗),  𝑗 = 0, … , 𝑁 − 1 (16) 

and 𝑁 − 1 bond vectors expressed as 

𝑦𝑗 = 𝐵𝐻(𝑗 + 1) − 𝐵𝐻(𝑗). (17)

 From these equations, Eq. [20] and 

Eq. [21], we define the probability 

density of the distribution as 
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 (22)                   

From the probability density, the 

Metropolis algorithm is used to 

produce updates of the configurations 

by updating randomly chosen 𝑥 →

𝑥𝑘, so that the initial conformation 

𝑥0(𝑥1, 𝑥2, … , 𝑥𝑘 , … 𝑥𝑁−1) becomes

𝑥1(𝑥1, 𝑥2, … , 𝑥𝑘 , … 𝑥𝑁−1) and so on.

Through this algorithm we compute 

and produce a conformation to a 

polymer. Iterating this process to a 

particular number of updates will 

eventually produce an equilibrium 

distribution of conformations. From 

these conformations, we get the 

simulated value of the Flory index 

and compare it with the natural 

logarithm of the root mean square of 

𝑅 and natural logarithm of 𝑁. 

 Self-avoiding fractional random 

walk 

    One can obtain of a model of 

polymer with weakly self-avoiding 

fractional random walk by penalizing 

the self-crossings of the polymer as 

indicated in the previous section. The 

goal in mind is to discretize the self-

intersection local time: 

 (23) 

with 

(18) 

The discretized version of the self-

interaction local time is given by 

𝐿𝑢 = #{𝑥𝑗|𝑥𝑗 ∈ 𝐼𝑛} (19) 

where we decompose the ℝ into 𝐼𝑛

intervals of equal length 𝑙. So that  

𝐿 = ∑ 𝐿𝑛
2 .

𝑛

(20) 

 Thus, the unnormalized probability 

density of conformations becomes 

𝜌(𝑥)~ exp (−
1

2
(𝑦, 𝐻0𝑦)

− 𝑔𝐿(𝑦)) .

(21

) 

 RESULTS AND DISCUSSIONS 

     In the simulation done in this 

paper, the number of monomers 𝑁 is 

chosen between the range of 100 and 

200. The choice of the range was

chosen by two considerations. 𝑁
should be large to approximate the

asymptotic regime. The upper bound

limit is chosen to be 200 to allow

smooth running of the program up to

3 days. This will be enough for the

first preliminary results of the study.
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Figure 1: Dependence of the scaling 

exponent from the penalizing strength 

for 𝐻 = 0,5, 𝑁 = 100, and 𝑠 = 106

updates. 

     In figure 1, the limiting case of 

Brownian motion is observed having 

a value of 𝐻 = 0.5 with a penalizing 

factor of zero (𝑔 = 0). For (𝑔 = 0) 

the walks have no penalization and 

will scale as fBm-path. For small 

positive values of 𝑔 the scaling index 

𝜈 seemingly varies and drops below it 

for larger 𝑔. Scrutiny of the end-to-

end length, i.e., conformations that 

did not unfold to equilibrium 

conformations during the simulation 

(relaxation period). 

Figure 2. Polymer configuration after 106 updates with 𝑁 = 200, 𝑔 =
0.005,  and (a) 𝐻 = 0.3, (b) 𝐻 = 0.6, (c) 𝐻 = 0.7, and (d) 𝐻 = 0.9. 
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     The results of the simulation of 

the polymer under varying Hurst 

exponent H for lengths 100 and 200 

are outlined and presented in table 

1. The table reflects the values of

the simulated values of the Flory

index for polymer 𝑁 = 100, 200
vs the theoretical value calculated

from the Flory index formula. The

simulation using our model has

successfully reproduced and

confirmed the Flory index formula

for short polymers, i.e., 100 to 200

number of monomers.

Table 1. Theoretical and simulated 

values of Flory index 𝜈 for polymer 

of 𝑁 = 100, 200 under varying H 

with 𝑔 = 0.056. 

H 

Scaling 

index 

(Theory) 

Number of monomers 

N = 100 N = 200 

Simulat

ed 

% 

error 

Simula

ted 

% 

error 

0.1 0.55 0.5300 3.636 0.5600 1.818 

0.2 0.60 0.6620 10.33 0.6210 3.500 

0.3 0.65 0.6800 4.615 0.6470 0.462 

0.4 0.70 0.6905 1.357 0.6054 13.510 

0.5 0.75 0.7486 0.187 0.7670 2.267 

0.6 0.80 0.8474 5.925 0.8632 7.900 

0.7 0.85 0.8388 1.318 0.8225 3.235 

0.8 0.90 0.8995 0.056 0.8907 1.033 

0.9 0.95 1.0041 5.695 1.1669 22.83 

     The polymer confirmation after 

106 updates with 𝐻 = 0.3, 0.6, 0.9
and 𝑁 = 200 monomers are shown 

in figure 4.2. It can be inferred from 

the plots that the polymer starts off 

in a wrinkled state. In this system, 

the increments or the monomers of 

the polymers are negatively 

correlated thus giving us the 

appearance as shown in Fig. 4.2 

(a). Notice that the polymer slowly 

unknots itself as the Hurst index 

(H) is gradually increased. For 𝐻 =
0.9, the polymer is fully extended

as shown in figure 4.2 (c) since the

increments of each monomer are

positively correlated.

     However, the model fails if we 

do the simulation for the polymer 

with 𝑁 = 300 and above. In this 

range, we begin to observe 

significant outliers of the result 

which cause a great mismatch of 

the simulated and theoretical 

values of the Flory index. These 

outliers are significantly different 

from all others in one or more 

ways. In other terms, these outlier 

data deviate from normalcy and 

can (and most likely will) create 

anomalies in algorithm and 

analytical system outputs. To 

amend this problem, relaxations 

with a constant g should not be 

performed but instead slowly 

increase the coupling constant from 

zero until the result will eliminate 

the outliers and stabilize the scaling 

index. 

CONCLUSIONS AND 

RECOMMENDATIONS 

In this paper, the concept of 

Brownian motion has been 

generalized into fractional 

Brownian motion. Results that the 

simulation of polymer in two 

dimensions is successful in 

confirming the Flory index formula 

for small length of polymers, in this 
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case, 𝑁 = 100, 200. Also, for 

small value of g, the simulated 

value of Flory index agrees with 

the theoretical prediction. 

However, the success of our model 

is limited only to short polymers 

not more than 𝑁 = 200 monomers. 

Moreover, the results in this paper 

showed the relationship between 

N, R and the Flory index which is 

given in equation (17) and (18). 

The simulation only accurately 

describes equation (18) for small 

scale N which is below 300 

monomers. We might be able to 

describe the scaling of polymers 

for large N (above 300 monomers) 

if we set g (coupling constant that 

appears in the penalizing factor) 

gradually. That is, g must be slowly 

increased from zero until the result 

will eliminate the outliers and 

stabilize the scaling index. 
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