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ABSTRACT 

  The 𝑟-Stirling numbers by Broder were initially defined through their 

combinatorial interpretation, and all essential properties and identities were 

obtained using a combinatorial approach. This paper introduces a slightly modified 

version of the 𝑟-Stirling numbers through their exponential generating functions and 

derives all necessary properties and identities using an algebraic approach. 
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INTRODUCTION: 

    The  origin of Stirling numbers can be 

traced back to James Stirling, who 

introduced them within a purely algebraic 

framework in his seminal work "Methodus

differentialis" (Stirling, 1730). More precisely, 
the Stirling numbers were introduced as pair 

of numbers usually denoted by 𝑠(𝑛, 𝑘) and 𝑆(𝑛, 
𝑘) satisfying the following inverse relations:  

𝑥𝑛 = ∑ 𝑠(𝑛, 𝑘)𝑥𝑘

𝑛

𝑘=0

  (𝐴) 

𝑥𝑛 = ∑ 𝑆(𝑛, 𝑘)𝑥𝑘

𝑛

𝑘=0

,  (𝐵) 

where 𝑥𝑛 = 𝑥(𝑥 − 1) … (𝑥 − 𝑛 + 1) is called 
the falling factorial of 𝑥 of degree 𝑛, the 
values 𝑠(𝑛, 𝑘) are referred to as Stirling 
numbers of the first kind, whereas the values 
𝑆(𝑛, 𝑘) are known as Stirling numbers of 
the second kind. 

  Throughout the 20th century, numerous 
mathematicians dedicated their efforts 
to generalizing and extending this pair
of Stirling  numbers exploring their
applications in combinatorial, probabilistic, 
and statistical domains. Among these 
mathematicians, A.Z. Broder (1984) made 
significant contributions. In Broder's 
exploration of Stirling numbers, 

particularly through the lens of permutations 

and partitions, he crafted a specific 

generalization known as the 𝑟-Stirling numbers. 

The work of Broder exhibits combinatorial 

approach in deriving properties and identities of 

𝑟-Stirling numbers analogous to those of the 

classical Stirling numbers, unveiling recurrence 

relations, generating functions, and explicit 

formulas. Specifically, Broder (1984) defined 𝑟-

Stirling numbers of the first and second kind as 

follows 

[
𝑛
𝑘

]
𝑟
= the number of ways to construct a 

permutation of the elements in the set 

{1, . . . , 𝑛} containing k cycles, such that 

the numbers 1, 2, . . . , 𝑟  are in different 

cycles; 

{
𝑛
𝑘

}
𝑟
= the number of ways to partition the 

set {1, . . . , 𝑛} into 𝑘 disjoint subsets, such 

that the numbers 1, 2, . . . , 𝑟 are in different 

subsets and each subset must contain at 

least one element. 

      In this present paper, a slightly distinct form 

of 𝑟-Stirling numbers will be introduced by 

means of their exponential generating functions 

and necessary properties and identities will be 
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established using algebraic approach. This paper 

showcases an alternative way of presenting the 

discussion and results in (Broder, 1984), which 

can be used as an excellent reference in 

developing a new variant of Stirling numbers 

mixing them with the concept of Bernoulli, 

Euler and Genocchi numbers. This research 

study not only enriches our understanding of 

Stirling numbers but also extends their utility 

across diverse mathematical landscapes. 

MATERIALS AND METHODS 

      Various ways exist for defining a generalized 

form of Stirling numbers, and the common 

approach involves introducing them through 

combinatorial interpretation, recurrence 

relations or explicit formulas. It is not common 

to define a generalized form of Stirling numbers 

by means of their exponential generating 

functions. However, other special numbers like 

Genocchi, Bernoulli and Euler numbers and 

their variations and extensions were usually 

defined via exponential generating function. 

Here, we opt to consider a certain generalization 

of Stirling numbers which are slightly modified 

version of 𝑟-Stirling numbers of Broder (1984) 

and present these numbers by leveraging their 

exponential generating function, employing an 

algebraic approach to derive essential properties 

and identities. More precisely, the slightly 

modified 𝑟-Stirling numbers find their 

definition as coefficients within the following 

exponential generating functions: 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

∞

𝑛=0

𝑡𝑛

𝑛!
= (

1

1 + 𝑡 
)

𝑟 lnk(1 + 𝑡) 

𝑘!
(1) 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛!

∞ 

𝑛=0

=
𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘

𝑘!
 (2)

where [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
 and {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟
denote the signed first 

kind 𝑟-Stirling numbers and second kind 𝑟-

Stirling numbers, respectively.  Throughout this 

paper, the term SM 𝑟-Stirling numbers will be 

used referring to a slightly modified 𝑟-Stirling 

numbers. 

      This methodology not only offers a concise 

representation but also facilitates a deeper 

understanding of the SM 𝑟-Stirling numbers by 

emphasizing their connection to generating 

functions. Through this algebraic lens, we 

unravel the important properties and identities 

inherent in the 𝑟-Stirling numbers of Broder 

(1984), contributing to a comprehensive 

exploration of their mathematical nature. 

RESULTS AND DISCUSSIONS 

      In this section, we derive properties and 

identities of the SM 𝑟-Stirling numbers 

analogous to those properties and identities of 

Broder’s 𝑟-Stirling numbers. 

Horizontal Generating Functions 

      The first property to derive is the horizontal 

generating function. This property is commonly 

used to define several variations and 

generalizations of Stirling numbers.  

Theorem 1. The horizontal generating 

functions for both kinds of SM r-Stirling 

numbers are given as follows:  

(𝑧 − 𝑟)𝑛 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

  (3) 

𝑧𝑛 = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘.

𝑛

𝑘=0

  (4) 

Proof. The exponential generating function in 

(1) can be written as

∑ {∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

∞

𝑛=𝑘

𝑡𝑛

𝑛!
}

 ∞

𝑘=0

𝑧𝑘  

=
1

(1 + 𝑡)𝑟 ∑
lnk(1 + 𝑡)

𝑘!
𝑘≥0

𝑧𝑘  

=
1

(1 + 𝑡)𝑟
∑

[𝑧 ln(1 + 𝑡) ]𝑘

𝑘!
𝑘≥0

=
1

(1 + 𝑡)𝑟  
𝑒ln(1+𝑡)𝑧

= (1 + 𝑡)𝑧
1

(1 + 𝑡)𝑟

= ∑ (
𝑧 − 𝑟

𝑛
) 𝑡𝑛

𝑛≥0

= ∑(𝑧 − 𝑟)𝑛

𝑛≥0

𝑡𝑛

𝑛!
 .  
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By rewriting the left hand side of the above 

equation, we get 

∑ {∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

𝑛

𝑘=0

𝑧𝑘}

 ∞

𝑛=0

𝑡𝑛

𝑛!
= ∑(𝑧 − 𝑟)𝑛

 ∞

𝑛=0

𝑡𝑛

𝑛!
. 

Comparing the coefficients of 
𝑡𝑛

𝑛!
yields the 

desired horizontal generating function in (3). On 

the other hand, the exponential generating 

function in (2) can be written as 

∑ {∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛!

∞

𝑛=𝑘

}

 ∞

𝑘=0

𝑧𝑘  

= ∑ {
𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘

𝑘!
}

 ∞

𝑘=0

𝑧𝑘  

= 𝑒𝑟𝑡 ∑ (
𝑧
𝑘

)

 ∞

𝑘=0

(𝑒𝑡 − 1)𝑘  

= 𝑒𝑟𝑡(1 + (𝑒𝑡 − 1))
𝑧

  = 𝑒(𝑧+𝑟)𝑡  = ∑(𝑧 + 𝑟)𝑛

 ∞

𝑛=0

𝑡𝑛

𝑛!

By rewriting the left hand side of the above 

equation, we get 

∑ {∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑧𝑘

𝑛

𝑘=0

}

 ∞

𝑛=0

𝑡𝑛

𝑛!
= ∑(𝑧 + 𝑟)𝑛

 ∞

𝑛=0

𝑡𝑛

𝑛!
. 

Comparing the coefficients of 
𝑡𝑛

𝑛!
 yields (4). 

Remark 2. Clearly, when 𝑛 < 𝑘, we have 

[
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

̂
= {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= 0. 

Moreover, when 𝑛 = 𝑘, 

[
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

̂
= {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= 1. 

Remark 3. Replacing 𝑧 by −𝑧 in equation 

(3) yields

(𝑧 + 𝑟)�̅� = ∑(−1)𝑛−𝑘 [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

, 

where 𝑤�̅� = 𝑤(𝑤 + 1) … (𝑤 + 𝑛 − 1) is the

rising factorial of 𝑤 of degree 𝑛. This indicates 

that the first kind 𝑟-Stirling numbers of Broder 

(1984) can be represented using the signed 𝑟-

Stirling numbers of the first kind  

[
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

= (−1)𝑛−𝑘 [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
. 

Orthogonality of SM 𝐫-Stirling Numbers 

      One of the important properties of Stirling-

type numbers is the orthogonality relation. This 

property provides remarkable consequences 

such as the inverse relation and matrix relation. 

The following theorem contains the 

orthogonality relations for both kinds of SM 𝑟-

Stirling numbers. 

Theorem 4. The orthogonality relation 

satisfied by the first and second kinds SM r-

Stirling numbers is as follows: 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
𝑑

𝑘=0

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑑

𝑘=0

= 𝛿𝑛𝑚

= { 
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

.  (5) 

where 𝛿𝑛𝑚 is the Kronecker delta and 𝑑 ≥ 𝑛..

Proof.  It's worth noting that equation (3) can 

be expressed as 

(𝑧 − 𝑟)𝑘 = ∑ [
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
𝑧𝑚

𝑘

𝑚=0

. 

Substituting this to (4) gives 

𝑧𝑛 = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

∑ [
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
𝑧𝑚

𝑘

𝑚=0

𝑛

𝑘=0

 

= ∑ ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
̂

𝑟
𝑧𝑚

𝑘

𝑚=0

𝑛

𝑘=0

 

= ∑ { ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
̂

𝑟

𝑛

𝑘=𝑚

} 𝑧𝑚

𝑛

𝑚=0

.  

Hence, 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
𝑛

𝑘=𝑚

= 𝛿𝑛𝑚 = { 
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

. 

Similarly, (4) can be written as 

𝑧𝑘 = ∑ {
𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑚

𝑘

𝑚=0

. 
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Substituting this to (3) yields 

(𝑧 − 𝑟)𝑛 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

̂
∑ {

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑚

𝑘

𝑚=0

𝑛

𝑘=0

= ∑ ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

𝑘

𝑚=0

{
𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑚

𝑛

𝑘=0

 

= ∑ { ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑛

𝑘=𝑚

} (𝑧 − 𝑟)𝑚

𝑛

𝑚=0

. 

Hence, 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

̂
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑛

𝑘=𝑚

= 𝛿𝑛𝑚 = { 
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

. 

Furthermore, since [
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

̂
= {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= 0 for 

𝑛 < 𝑘, we have 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
𝑑

𝑘=0

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑑

𝑘=0

= 𝛿𝑛𝑚 = { 
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

. 

for some 𝑑 ≥ 𝑛. 

Remark 5. Using Remark 3, we have 

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
= (−1)𝑛−𝑘 [

𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟
. 

Then, Theorem 4 gives 

∑ (−1)𝑘 {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

𝑛

𝑘=𝑚

= ∑ (−1)𝑘 [
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

{
𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑛

𝑘=𝑚

= (−1)𝑛𝛿𝑛𝑚 = {
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

,  

which is exactly the orthogonality relation for 

both kinds of Broder’s 𝑟-Stirling numbers. 

Remark 6. The following matrix relation is a 

direct consequence of the orthogonality 

relation in Theorem 4: 

({
𝑖 + 𝑟
𝑗 + 𝑟

}
𝑟

)
𝑛

([
𝑖 + 𝑟
𝑗 + 𝑟]

𝑟
)

̂

𝑛

= ([
𝑖 + 𝑟
𝑗 + 𝑟

̂
]

𝑟
)

𝑛

({
𝑖 + 𝑟
𝑗 + 𝑟

}
𝑟

)
𝑛

= 𝐼𝑛.

Inverse Relations of SM  𝐫-Stirling Numbers 

      Another important property that a special 

number needs to possess is the inverse relation. 

This can help transform some generating 

functions into other forms of relations that have 

significant meaning in combinatorics. 

Theorem 7. The inverse relation satisfied by the 

SM r-Stirling numbers is as follows: 

𝑓𝑛 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑔𝑘

𝑛

𝑘=0

⟺ 𝑔𝑛 = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑓𝑘

𝑛

𝑘=0

 (6) 

𝑓𝑘 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑔𝑛

∞

𝑛=𝑘

⟺ 𝑔𝑘 = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑓𝑛.

∞

𝑛=𝑘

 (7) 

Proof:  Using the hypothesis in (4), we have 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑓𝑘

𝑛

𝑘=0

= ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑛

𝑘=0

∑ [
𝑘 + 𝑟
𝑚 + 𝑟

̂
]

𝑟
𝑔𝑚

𝑘

𝑚=0

= ∑  

𝑛

𝑘=0

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

̂
]

𝑟

𝑔𝑚

𝑘

𝑚=0

 

= ∑ { ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑘 + 𝑟
𝑚 + 𝑟

̂
]

𝑟

𝑛

𝑘=𝑚

} 𝑔𝑚

𝑛

𝑚=0

 

= ∑ 𝛿𝑛𝑚 𝑔𝑚

𝑛

𝑚=0

  = 𝛿𝑛𝑛𝑔𝑛 = 𝑔𝑛. 

Conversely, we have 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
𝑔𝑘 =

𝑛

𝑘=0

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑛

𝑘=0

∑ {
𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑓𝑚

𝑘

𝑚=0

  = ∑  

𝑛

𝑘=0

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑓𝑚

𝑘

𝑚=0

 

  = ∑  { ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
{

𝑘 + 𝑟
𝑚 + 𝑟

}
𝑟

𝑛

𝑘=𝑚

}

𝑛

𝑚=0

𝑓𝑚 

  = ∑  𝛿𝑛𝑚

𝑛

𝑚=0

𝑓𝑚 = 𝛿𝑛𝑛𝑓𝑛 = 𝑓𝑛. 

To prove the inverse relation in (7), we use 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑓𝑛

∞

𝑛=𝑘

= ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

∑ [
𝑚 + 𝑟
𝑛 + 𝑟

̂
]

𝑟
𝑔𝑚

∞

𝑚=𝑛

∞

𝑛=𝑘

  = ∑  

∞

𝑛=𝑘

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑚 + 𝑟
𝑛 + 𝑟

̂
]

𝑟

𝑔𝑚

∞

𝑚=𝑛

 

 = ∑  

∞

𝑚=0

{∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

[
𝑚 + 𝑟
𝑛 + 𝑟

̂
]

𝑟

𝑚

𝑛=0

} 𝑔𝑚 

= ∑  

∞

𝑚=0

𝛿𝑚𝑘𝑔𝑚 = 𝛿𝑘𝑘𝑔𝑘 = 𝑔𝑘 .  
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Conversely, we have 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑔𝑛 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

∞

𝑛=𝑘

∞

𝑛=𝑘

∑ {
𝑚 + 𝑟
𝑛 + 𝑟

}
𝑟

𝑓𝑚

∞

𝑚=𝑛

= ∑  

∞

𝑛=𝑘

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

{
𝑚 + 𝑟
𝑛 + 𝑟

}
𝑟

𝑓𝑚

∞

𝑚=𝑛

 

= ∑ {∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

{
𝑚 + 𝑟
𝑛 + 𝑟

}
𝑟

𝑚

𝑛=0

} 

∞

𝑚=0

𝑓𝑚 

= ∑ 𝛿𝑚𝑘𝑓𝑚 = 𝛿𝑘𝑘𝑓𝑘 = 𝑓𝑘 

∞

𝑚=0

. ∎.  

Remark 8. Applying the inverse relation in 

(7) to the generating functions in (1) and (2)

gives

(1 + 𝑡)𝑟𝑡𝑘

𝑘!
= ∑ {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

ln𝑛(1 + 𝑡)

𝑛!

∞

𝑛=𝑘

𝑡𝑘

𝑒𝑟𝑡𝑘!
= ∑ [

𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

(𝑒𝑡 − 1)𝑛

𝑛!

∞

𝑛=𝑘

. 

These are new identities for SM 𝑟-Stirling 

numbers of both kinds. 

Triangular Recurrence Relation 

      The next property to consider is the 

recurrence relations of both kinds of SM 𝑟-

Stirling numbers. This relation aids in swiftly 

computing the initial values of the SM 𝑟-Stirling 

numbers. 

Theorem 9. The SM r-Stirling numbers satisfy 

the following recursive formulas: 

 [
𝑛 + 𝑟 + 1

𝑘 + 𝑟
]

̂

𝑟
= [

𝑛 + 𝑟
𝑘 + 𝑟 − 1

̂
]

𝑟
− (𝑟 + 𝑛) [

𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

 {
𝑛 + 𝑟 + 1

𝑘 + 𝑟
}

𝑟
= {

𝑛 + 𝑟
𝑘 + 𝑟 − 1

}
𝑟

+ (𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟
. 

Proof. In accordance with (3), we may write 

∑ [
𝑛 + 𝑟 + 1

𝑘 + 𝑟
]

̂

𝑟
𝑧𝑘

𝑛+1

𝑘=0

= (𝑧 − 𝑟)𝑛+1

= (𝑧 − 𝑟)𝑛(𝑧 − 𝑟 − 𝑛) 

 = (𝑧 − 𝑟 − 𝑛) ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

 

 = (𝑧 + (−𝑟 − 𝑛)) ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

 

  = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘+1

𝑛

𝑘=0

+ (−𝑟 − 𝑛) ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

  = ∑ [
𝑛 + 𝑟

𝑘 + 𝑟 − 1
]

𝑟

̂
𝑧𝑘

𝑛+1

𝑘=1

+ ∑(−𝑟 − 𝑛) [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛+1

𝑘=0

  = ∑ {[
𝑛 + 𝑟

𝑘 + 𝑟 − 1
]

̂

𝑟
+ (−𝑟 − 𝑛) [

𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
}

𝑛+1

𝑘=0

𝑧𝑘 . 

By comparing the coefficients of 𝑧𝑘, we obtain

the triangular recursive formula for the signed 

first kind 𝑟-Stirling numbers: 

[
𝑛 + 𝑟 + 1

𝑘 + 𝑟
]

̂

𝑟
= [

𝑛 + 𝑟
𝑘 + 𝑟 − 1

̂
]

𝑟

+ (−𝑟 − 𝑛) [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
.

Similarly, (4) may be written as 

∑ {
𝑛 + 𝑟 + 1

𝑘 + 𝑟
}

𝑟
(𝑧 − 𝑟)𝑘

𝑛+1

𝑘=0

= 𝑧𝑛+1 = 𝑧𝑛𝑧

 = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘  𝑧

𝑛

𝑘=0

= ∑(𝑧 − 𝑘 + 𝑘 − 𝑟 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘 

𝑛

𝑘=0

= ∑(𝑧 − 𝑟 − 𝑘) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘  

𝑛

𝑘=0

+ ∑(𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘 

𝑛

𝑘=0

= ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘+1 

𝑛

𝑘=0

+ ∑(𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘 

𝑛

𝑘=0

= ∑ {
𝑛 + 𝑟

𝑘 + 𝑟 − 1
}

𝑟
(𝑧 − 𝑟)𝑘  

𝑛+1

𝑘=0

+ ∑(𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

(𝑧 − 𝑟)𝑘 

𝑛+1

𝑘=0

= ∑ {{
𝑛 + 𝑟

𝑘 + 𝑟 − 1
}

𝑟
+ (𝑘 + 𝑟) {

𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟
} (𝑧 − 𝑟)𝑘 

𝑛+1

𝑘=0

. 
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Now identifying the coefficients of (𝑧 − 𝑟)𝑘,

we obtain the following triangular recurrence 

relation for {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

{
𝑛 + 𝑟 + 1

𝑘 + 𝑟
}

𝑟
= {

𝑛 + 𝑟
𝑘 + 𝑟 − 1

}
𝑟

+ (𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

. ∎ 

Remark 10. Using Remark 3, 

(−1)𝑛+1−𝑘 [
𝑛 + 𝑟 + 1

𝑘 + 𝑟

̂
]

𝑟

 = (−1)𝑛+1−𝑘 [
𝑛 + 𝑟

𝑘 + 𝑟 − 1

̂
]

𝑟

 +(−1)𝑛+1−𝑘(−1)(𝑟 + 𝑛) [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

 = (−1)𝑛+1−𝑘 [
𝑛 + 𝑟

𝑘 + 𝑟 − 1

̂
]

𝑟

 +(𝑟 + 𝑛)(−1)𝑛−𝑘 [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

 = [
𝑛 + 𝑟

𝑘 + 𝑟 − 1
]

𝑟
+ (𝑛 + 𝑟) [

𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

, 

which is exactly the triangular recursive formula 

of Broder’s first kind 𝑟-Stirling numbers. 

To demonstrate the utility of the triangular 

recurrence relations outlined in Theorem 9, we 

generate specific values of SM 𝑟-Stirling 

numbers. For the first kind, this is facilitated by 

the following triangular recurrence relation: 

 [
𝑛 + 𝑟 + 1

𝑘 + 𝑟
]

̂

𝑟
= [

𝑛 + 𝑟
𝑘 + 𝑟 − 1

̂
]

𝑟
− (𝑟 + 𝑛) [

𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
, 

with 𝑛 = 2, 𝑘 = 2, 𝑟 = 2, we have 

 [
2
1

]
̂

2
= 0 

 [
3
2

]
̂

2
= [

2
1

]
̂

2
− 2 [

2
2

]
̂

2
= 0 − 2(1) = −2 

 [
4
3

]
̂

2
= [

3
2

]
̂

2
− 3 [

3
3

]
̂

2
= −2 − 3(1) = −5 

 [
5
4

]
̂

2
= [

4
3

]
̂

2
− 4 [

4
4

]
̂

2
= −5 − 4(1) = −9. 

Now, with 𝑛 = 3, 𝑘 = 3, 𝑟 = 3, we have 

[
3
2

]
̂

3
= 0 

[
4
3

]
̂

3
= [

3
2

]
̂

3
− 3 [

3
3

]
̂

3
= 0 − 3(1) = −3 

[
5
4

]
̂

3
= [

4
3

]
̂

3
− 4 [

4
4

]
̂

3
= −3 − 4 = −7 

[
6
5

]
̂

3
= [

5
4

]
̂

3
− 5 [

5
5

]
̂

3
= −7 − 5 = −12 

[
7
6

]
̂

3
= [

6
5

]
̂

3
− 6 [

6
6

]
̂

3
= −12 − 6 = −18 

       For the second kind SM 𝑟-Stirling numbers 

which is given by this triangular recurrence 

relation, 

{
𝑛 + 𝑟 + 1

𝑘 + 𝑟
}

𝑟
= {

𝑛 + 𝑟
𝑘 + 𝑟 − 1

}
𝑟

+ (𝑘 + 𝑟) {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟
, 

with 𝑛 = 2, 𝑘 = 2, 𝑟 = 2, we have 

{
2
1

}
2

= 0 

{
3
2

}
2

= {
2
1

}
2

+ (2) {
2
2

}
2

= 2 

{
4
3

}
2

= {
3
2

}
2

+ (3) {
3
3

}
2

= 5 

{
5
4

}
2

= {
4
3

}
2

+ (4) {
4
4

}
2

= 9. 

With 𝑛 = 3, 𝑘 = 3, 𝑟 = 3, we have 

{
3
2

}
3

= 0 

{
4
3

}
3

= {
3
2

}
3

+ (3) {
3
3

}
3

= 3 

{
5
4

}
3

= {
4
3

}
3

+ (4) {
4
4

}
3

= 7 

{
6
5

}
3

= {
5
4

}
3

+ (5) {
5
5

}
3

= 12 

{
7
6

}
3

= {
6
5

}
3

+ (6) {
6
6

}
3

= 18. 

Indeed, the first values of SM 𝑟-Stirling 

numbers can be computed quickly using the 

triangular recurrence relations. 

Explicit Formulas 

     Another important property of a special 

number is its explicit formula. This is useful in 

computing directly the value of the special 

number for a given specific value of the 

parameters involved. The subsequent theorem 

provides the explicit formula for the 𝑟-Stirling 

numbers of the second kind. 

Theorem 11. The formula for the second kind 𝑟-

Stirling numbers is explicitly stated as follows: 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

=
1

𝑘!
∑(−1)𝑘−𝑖 (

𝑘
𝑖

) (𝑖 + 𝑟)𝑛.

𝑘 

𝑖=0

 (8)
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Proof. Using (2), we obtain 

∑ 𝑘! {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛!

𝑛

𝑛≥𝑘

= 𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘

 = ∑ 𝑒𝑟𝑡 (
𝑘
𝑖

)

𝑘

𝑖=0

(𝑒𝑡)𝑘−𝑖(−1)𝑖  

 = ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

𝑒𝑟𝑡+(𝑘−𝑖)𝑡(−1)𝑖 

 = ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

𝑒𝑡(𝑟+(𝑘−𝑖))(−1)𝑖

 = ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

{∑
(((𝑘 − 𝑖) + 𝑟)𝑡)

𝑛

𝑛!
𝑛≥0

} (−1)𝑖

 = ∑  

𝑘

𝑛≥0

{∑(−1)𝑖 (
𝑘
𝑖

) ((𝑘 − 𝑖) + 𝑟)
𝑛

𝑘 

𝑖=0

}
𝑡𝑛

𝑛!

 = ∑  

𝑘

𝑛≥0

{∑(−1)𝑖 (
𝑘
𝑖

) ((𝑘 − 𝑖) + 𝑟)
𝑛

𝑘 

𝑖=0

}
𝑡𝑛

𝑛!
. 

Comparing the coefficients of 
𝑡𝑛

𝑛!
 both sides 

yields 

𝑘! {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑(−1)𝑖 (
𝑘
𝑖

) ((𝑘 − 𝑖) + 𝑟)
𝑛

𝑘 

𝑖=0

. 

Replacing 𝑖 with 𝑘 − 𝑖 gives the desired 

explicit formula in (8). ∎ 

      The following theorem provides the explicit 

formula for the signed first kind 𝑟-Stirling 

numbers. This formula is also recognized as the 

Schlömilch-type formula. 

Theorem 12. The signed first kind 𝑟-Stirling 

number is explicitly defined by the following 

formula: 

[
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
= ∑ ∑ ∑(−1)𝑛−𝑚+𝑗+𝑟 (

𝑛

𝑚
) (

𝑟

𝑗
)

𝑟

𝑗=𝑖

𝑚−𝑘

𝑟=0

𝑛

𝑚=𝑘

× 

× (
𝑚 − 1 + 𝑟

𝑚 − 𝑘 + 𝑟
) (

2𝑚 − 𝑘

𝑚 − 𝑘 + 𝑟
) 

(𝑟 − 𝑗)𝑚−𝑘+𝑟

𝑟!
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅. 

Proof.  When 𝑟 = 0, the exponential 

generating function for the first kind signed 𝑟-

Stirling numbers reduces to  

∑ 𝑠(𝑛, 𝑘)
𝑡𝑛

𝑛!
𝑛≥0

=
1

𝑘!
[ln(1 + 𝑡)]𝑘

where 𝑠(𝑛, 𝑘) denotes the Stirling numbers 

of the first kind. Note that the EGF of signed 

𝑟-Stirling numbers of the first kind which is 

given by  

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑛

𝑘≥0

𝑡𝑛

𝑛!
=  (

1

1 + 𝑡
)

𝑟 [ln(1 + 𝑡)]𝑘

𝑘!
. 

is composed of two functions. The first 

function can be expressed as 

(
1

1 + 𝑡
)

𝑟

= (1 + 𝑡)−𝑟 

=  ∑ (
−𝑟

𝑛
) 𝑡𝑛

𝑛≥0

 

=  (
−𝑟

0
) 𝑡0 + ∑ (

−𝑟

𝑛
) 𝑡𝑛

𝑛>0

 

where (−𝑟
𝑛

) is the Newton’s generalized 

binomial coefficients. Applying the Newton’s 

Binomial Theorem yields 

(
1

1 + 𝑡
)

𝑟

= 1 + ∑
(−𝑟)(−𝑟 − 1) … (−𝑟 − 𝑛 + 1)

𝑛!
𝑛>0

𝑡𝑛

  = 1 + ∑
(−1)𝑛(𝑟)(𝑟 + 1) … (𝑟 + 𝑛 − 1)𝑡𝑛

𝑛!
𝑛>0

  = 1 + ∑(−1)𝑛(𝑟)(𝑟 + 1) … (𝑟 + 𝑛 − 1)

𝑛>0

𝑡𝑛

𝑛!
 . 

And, by the definition of the rising factorial, 

(
1

1 + 𝑡
)

𝑟

= 1 + ∑(−1)𝑛𝑟�̅�

𝑛>0

𝑡𝑛

𝑛!

 = ∑(−1)𝑛𝑟�̅�

𝑛≥0

𝑡𝑛

𝑛!
. 

The second function 
1

𝑘!
[ln(1 + 𝑡)]𝑘  can be

expressed as 

1

𝑘!
[ln(1 + 𝑡)]𝑘 = ∑ 𝑠(𝑛, 𝑘)

𝑛≥𝑘

𝑡𝑛

𝑛!
. 

Hence, using Cauchy’s Rule for the product 

of two power series, we have 
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∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑛

𝑘≥0

𝑡𝑛

𝑛!
= (∑(−1)𝑛𝑟�̅�

𝑛≥0

𝑡𝑛

𝑛!
) (∑ 𝑠(𝑛, 𝑘)

𝑛≥𝑘

𝑡𝑛

𝑛!
) 

= ∑ { ∑
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅𝑡𝑛−𝑚

(𝑛 − 𝑚)!
(−1)𝑛−𝑚𝑠(𝑚, 𝑘)

𝑛

𝑚=𝑘

𝑡𝑚

𝑚!
}

𝑛≥0

 

= ∑ { ∑
𝑡𝑛−𝑚+𝑚

(𝑛 − 𝑚)! 𝑚!
(−1)𝑛−𝑚𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅𝑠(𝑚, 𝑘)

𝑛

𝑚=𝑘

}

𝑛≥0

 

= ∑ { ∑
1

(𝑛 − 𝑚)! 𝑚!
(−1)𝑛−𝑚𝑠(𝑚, 𝑘)𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅

𝑛

𝑚=𝑘

}

𝑛≥0

𝑡𝑛. 

Multiplying the summand of the left hand 

side of the equation by 
𝑛!

𝑛!
 yields 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

𝑛

𝑘≥0

𝑡𝑛

𝑛!

= ∑ { ∑
1

(𝑛 − 𝑚)! 𝑚!
(−1)𝑛−𝑚𝑠(𝑚, 𝑘)𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅

𝑛

𝑚=𝑘

}

𝑛≥0

𝑛!

𝑛!
𝑡𝑛

= ∑ { ∑ (
𝑛

𝑚
) (−1)𝑛−𝑚𝑠(𝑚, 𝑘)𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅

𝑛

𝑚=𝑘

}

𝑛≥0

𝑡𝑛

𝑛!
. 

By comparing the coefficients of 
𝑡𝑛

𝑛!
, we have 

[
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟
= ∑ (

𝑛

𝑚
) (−1)𝑛−𝑚𝑠(𝑚, 𝑘)𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅.

𝑛

𝑚=𝑘

Using the Schlömilch formula for the Stirling 

numbers of the first kind 

𝑠(𝑛, 𝑘)

= ∑ ∑(−1)𝑗+𝑟 (
𝑟

𝑗
) (

𝑛 − 1 + 𝑟

𝑛 − 𝑘 + 𝑟
)

𝑟

𝑗=𝑖

𝑛−𝑘

𝑟=0

(
2𝑛 − 𝑘

𝑛 − 𝑘 + 𝑟
)

(𝑟 − 𝑗)𝑛−𝑘+𝑟

𝑟!
, 

the Schlömilch-type formula for the signed 

𝑟-Stirling of the first kind is given by 

[
𝑛 + 𝑟
𝑘 + 𝑟

̂
]

𝑟

= ∑ (
𝑛

𝑚
) (−1)𝑛−𝑚 ∑ ∑(−1)𝑗+𝑟 (

𝑟

𝑗
) (

𝑚 − 1 + 𝑟

𝑚 − 𝑘 + 𝑟
)

𝑟

𝑗=𝑖

𝑚−𝑘

𝑟=0

𝑛

𝑚=𝑘

 

(
2𝑚 − 𝑘

𝑚 − 𝑘 + 𝑟
)

(𝑟 − 𝑗)𝑚−𝑘+𝑟

𝑟!
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅

= ∑ ∑ ∑(−1)𝑛−𝑚+𝑗+𝑟 (
𝑛

𝑚
) (

𝑟

𝑗
) (

𝑚 − 1 + 𝑟

𝑚 − 𝑘 + 𝑟
)

𝑟

𝑗=𝑖

𝑚−𝑘

𝑟=0

𝑛

𝑚=𝑘

 

(
2𝑚 − 𝑘

𝑚 − 𝑘 + 𝑟
)

(𝑟 − 𝑗)𝑚−𝑘+𝑟

𝑟!
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅. ∎

Remark 13. Using Remark 3, we have 

[
𝑘 + 𝑟
𝑚 + 𝑟

]
𝑟

̂
= (−1)𝑛−𝑘 [

𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

= ∑ ∑ ∑(−1)𝑛−𝑚+𝑗+𝑟 (
𝑛

𝑚
) (

𝑟

𝑗
) (

𝑚 − 1 + 𝑟

𝑚 − 𝑘 + 𝑟
)

𝑟

𝑗=𝑖

𝑚−𝑘

𝑟=0

𝑛

𝑚=𝑘

 

(
2𝑚 − 𝑘

𝑚 − 𝑘 + 𝑟
)

(𝑟 − 𝑗)𝑚−𝑘+𝑟

𝑟!
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅. 

[
𝑛 + 𝑟
𝑘 + 𝑟

]
𝑟

= ∑ ∑ ∑(−1)𝑘−𝑚+𝑗+𝑟 (
𝑛

𝑚
) (

𝑟

𝑗
) (

𝑚 − 1 + 𝑟

𝑚 − 𝑘 + 𝑟
)

𝑟

𝑗=𝑖

𝑚−𝑘

𝑟=0

𝑛

𝑚=𝑘

 

(
2𝑚 − 𝑘

𝑚 − 𝑘 + 𝑟
)

(𝑟 − 𝑗)𝑚−𝑘+𝑟

𝑟!
𝑟𝑛−𝑚̅̅ ̅̅ ̅̅ ̅. 

This is exactly the Schlömilch-type formula 

obtained in (Corcino et al., 2014) for the 𝑟-

Stirling numbers of the first kind. 

Rational Generating Function 

        The subsequent theorem includes the 

rational generating function for the second 

kind 𝑟-Stirling numbers. 

Theorem 13. The rational generating 

function holds true for the r-Stirling numbers 

of the second kind, where n and k are non-

negative integers: 

𝜓𝑘(𝑡) = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛≥𝑘

=
𝑡𝑘

∏ (1 − 𝑡(𝑗 + 𝑟))𝑘
𝑗=0

. 

Proof:  When 𝑘 = 0, we have 

𝜓0(𝑡) = ∑ {
𝑛 + 𝑟

𝑟
}

𝑟
𝑡𝑛

𝑛≥0

= ∑ 𝑟𝑛+𝑟−𝑟𝑡𝑛

𝑛≥0

 

= ∑ 𝑟𝑛𝑡𝑛

𝑛≥0

= ∑(𝑟𝑡)𝑛

𝑛≥0

=
1

1 − 𝑟𝑡
. 

Using the triangular recurrence relation in 

Theorem 9, we get 

𝜓𝑘(𝑡) = ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛≥𝑘

= ∑ [{
𝑛 − 1 + 𝑟
𝑘 + 𝑟 − 1

}
𝑟

+ (𝑘 + 𝑟) {
𝑛 − 1 + 𝑟

𝑘 + 𝑟
}

𝑟
] 𝑡𝑛

𝑛≥𝑘
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= ∑ 𝑡 {
(𝑛 − 1) + 𝑟
𝑘 + 𝑟 − 1

}
𝑟

𝑡𝑛−1 +

𝑛≥𝑘

𝑡(𝑘

+ 𝑟) ∑ {
(𝑛 − 1) + 𝑟

𝑘 + 𝑟
}

𝑟

𝑡𝑛−1

𝑛≥𝑘+1

 

= ∑ 𝑡 {
(𝑛 − 1 + 1) + 𝑟

𝑘 + 𝑟 − 1
}

𝑟

𝑡𝑛−1+1 +

𝑛≥𝑘−1

𝑡(𝑘 

+ 𝑟) ∑ {
(𝑛 − 1 + 1) + 𝑟

𝑘 + 𝑟
}

𝑟

𝑡𝑛−1+1

𝑛≥𝑘

 

= 𝑡 ∑ {
𝑛 + 𝑟

𝑘 + 𝑟 − 1
}

𝑟
𝑡𝑛 +

𝑛≥𝑘−1

𝑡(𝑘 + 𝑟) ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛≥𝑘

. 

Hence, 

 𝜓𝑘(𝑡) = 𝑡𝜓𝑘−1(𝑡) + 𝑡(𝑘 + 𝑟)𝜓𝑘(𝑡)

 𝜓𝑘(𝑡) =
𝑡

(1 − 𝑡(𝑘 + 𝑟))
𝜓𝑘−1(𝑡). 

Thus, 

𝜓𝑘(𝑡) =
𝑡

(1 − 𝑡(𝑘 + 𝑟))
𝜓𝑘−1(𝑡)

 =
𝑡

(1 − 𝑡(𝑘 + 𝑟))

𝑡

(1 − 𝑡((𝑘 − 1) + 𝑟))
𝜓𝑘−2(𝑡)

=
𝑡

(1 − 𝑡(𝑘 + 𝑟))

𝑡

(1 − 𝑡((𝑘 − 1) + 𝑟))
… 

𝑡

(1 − 𝑡((𝑘 − (𝑘 − 1)) + 𝑟))
𝜓𝑘−𝑘(𝑡)

=
𝑡

(1 − 𝑡(𝑘 + 𝑟))

𝑡

(1 − 𝑡((𝑘 − 1) + 𝑟))
… 

𝑡

(1 − 𝑡(1 + 𝑟))

1

1 − 𝑟𝑡

 𝜓𝑘(𝑡) =  ∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

𝑛≥𝑘

=
𝑡𝑘

∏ (1 − 𝑡(𝑗 + 𝑟))𝑘
𝑗=0

. ∎ 

        An important implication of the  

generating function in Theorem 13 is the 

subsequent formula represented in symmetric 

function form. 

Theorem 14. The explicit formula in 

homogeneous function form for the second 

kind 𝑟-Stirling numbers is provided for 

nonnegative integers n and k: 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑ ∏(𝑗 + 𝑟)𝑠𝑗

𝑘

𝑗=0𝑠0+𝑠1+𝑠2+⋯+𝑠𝑘=𝑛−𝑘

. 

Equivalently, we have 

{
𝑛 + 𝑚

𝑛
}

𝑟
= ∑ ∏ 𝑗𝑖

𝑚

𝑖=1𝑟≤ 𝑗1≤𝑗2≤⋯≤𝑗𝑚 ≤ 𝑛

. 

Proof: The generating function as described 

in Theorem 13 can be written as  

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑛≥𝑘

𝑡𝑛 =
𝑡𝑘

∏ (1 − 𝑡(𝑗 + 𝑟))𝑘
𝑗=0

 = 𝑡𝑘 ∏
1

(1 − 𝑡(𝑗 + 𝑟))

𝑘

𝑗=0

= 𝑡𝑘 ∏ ∑(𝑡(𝑗 + 𝑟))
𝑛

𝑛≥𝑘

𝑘

𝑗=0

 = 𝑡𝑘 ∏ ∑(𝑗 + 𝑟)𝑛𝑡𝑛

𝑛≥𝑘

𝑘

𝑗=0

 = 𝑡𝑘 ∑ ∑ ∏(𝑗 + 𝑟)𝑠𝑗

𝑘

𝑗=0

𝑡𝑠𝑗

𝑠0+𝑠1+𝑠2+⋯+𝑠𝑘=𝑛−𝑘𝑛≥𝑘

 = 𝑡𝑘 ∑ ∑ 𝑡𝑛−𝑘 ∏(𝑗 + 𝑟)𝑠𝑗

𝑘

𝑗=0𝑠0+𝑠1+𝑠2+⋯+𝑠𝑘=𝑛−𝑘𝑛≥𝑘

 = ∑ { ∑ ∏(𝑗 + 𝑟)𝑠𝑗

𝑘

𝑗=0𝑠0+𝑠1+𝑠2+⋯+𝑠𝑘=𝑛−𝑘

} 𝑡𝑛

𝑛≥𝑘

. 

Hence, comparing the coefficients of 𝑡𝑛, we

have 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑ ∏(𝑗 + 𝑟)𝑠𝑗

𝑘

𝑗=0𝑠0+𝑠1+𝑠2+⋯+𝑠𝑘=𝑛−𝑘

. 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑ (0 + 𝑟) … (0 + 𝑟)

𝑠0+⋯+𝑠𝑘=𝑛−𝑘

∙ (1 + 𝑟) … (1 + 𝑟) ∙ …
∙ (𝑘 + 𝑟) … (𝑘 + 𝑟)
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 {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑ ∏(𝑗𝑖 + 𝑟)

𝑛−𝑘

𝑖=10≤ 𝑗1≤𝑗2≤⋯≤𝑗𝑛−𝑘 ≤ 𝑘

. 

Replacing 𝑛 with 𝑛 + 𝑚 − 𝑟 and 𝑘 with 𝑛 −
𝑟, we get 

{
𝑛 + 𝑚 − 𝑟 + 𝑟

𝑛 − 𝑟 + 𝑟
}

𝑟

  = ∑ ∏ (𝑗𝑖 + 𝑟)

(𝑛+𝑚−𝑟)−(𝑛−𝑟)

𝑖=10≤ 𝑗1≤⋯≤𝑗𝑛+𝑚−𝑟−(𝑛−𝑟) ≤ 𝑛−𝑟

{
𝑛 + 𝑚

𝑛
}

𝑟
= ∑ ∏(𝑗𝑖 + 𝑟)

𝑚

𝑖=10≤ 𝑗1≤𝑗2≤⋯≤𝑗𝑚 ≤ 𝑛−𝑟

  (9) 

{
𝑛 + 𝑚

𝑛
}

𝑟
= ∑ ∏(𝑗𝑖 − 𝑟 + 𝑟)

𝑚

𝑖=1𝑟≤ 𝑗1≤𝑗2≤⋯≤𝑗𝑚 ≤ 𝑛+𝑟−𝑟

{
𝑛 + 𝑚

𝑛
}

𝑟
= ∑ ∏ 𝑗𝑖

𝑚

𝑖=1𝑟≤ 𝑗1≤𝑗2≤⋯≤𝑗𝑚 ≤ 𝑛

. ∎.  

       The significance of Theorem 14 lies in 

linking the second kind 𝑟-Stirling numbers with 

the notions of 0-1 tableau and 𝐴-tableau. As 

articulated in (De Medicis and Leroux, 1995), 

an 𝐴-tableau, denoted by 𝜑, corresponds to a 

sequence of column 𝑐 within a Ferrer's diagram 

of a partition λ. These columns are organized in 

a descending order of length, and the lengths |c| 

are chosen from the sequence 𝐴 =  (𝑎𝑖)𝑖≥0,

where 𝐴 represents a strictly ascending 

sequence of non-negative integers, as defined in 

(De Medicis and Leroux, 1995). 

       It is important to observe that an 𝐴-

tableau can be created by specifying the count of 

columns whose lengths belong to the sequence 

𝐴. For instance, considering 𝐴 =  {1, 2, 3, 4}, 

the 𝐴-tableaux characterized by precisely 3 

columns, with their lengths being part of the 

sequence 𝐴, can be expressed in terms of 

multisets. In this representation, the entries 

consist of column lengths, rather than entire 

columns, and can be articulated as follows: 
{4,4,4} {4,4,3} {4,4,2} {4,4,1} {4,3,3} {4,3,2} 

{4,3,1} {4,2,2} {4,2,1} {4,1,1} {3,3,3} {3,3,2} 

{3,3,1} {3,2,2} {3,2,1} {3,1,1} {2,2,2} {2,2,1} 

{2,1,1} {1,1,1}. 

       This implies that the number of such A-

tableaux is the same as the number of 3-element 

multi-subsets of the multiset {∞ ·  1, ∞ ·
2, ∞ ·  3, ∞ ·  4} which is given by 𝐻3

4  =  20
(Chen and Koh, 1992). In general, the number 

of 𝑟-element multi-subsets of a multiset 𝑀 =
 {∞ ·  𝑎1, ∞ ·  𝑎2, . . . , ∞ · 𝑎𝑛} as given in

(Chen and Koh, 1992) is 

𝐻𝑟
𝑛 = (

𝑟 + 𝑛 − 1

𝑟
). 

Therefore, if 𝑇𝐴 (𝑘, 𝑟) represents the collection

of 𝐴-tableaux featuring r columns, where the 

lengths − which may not necessarily be distinct 

− belong to the set {0, 1, 2, . . . , 𝑘}, then

|𝑇𝐴 (𝑘, 𝑟)| = (
𝑟 + 𝑘

𝑟
).

Consider a function 𝜔: 𝑁∗  to 𝐾, where 𝑁∗ is
the set of non-negative integers and 𝐾 is a ring. 

Assuming 𝚽 represents an 𝐴-tableau featuring 𝑟 

columns whose lengths |𝑐| are less than or equal 

to ℎ, we define 

𝜔(𝚽) = ∏ 𝜔(|𝑐|)

𝑐∈𝚽

. 

It is worth noting that 𝚽 could include a finite 

number of columns with zero lengths, given that 

0 belongs to 𝐴 =  {0, 1, 2, . . . , 𝑘}, and assuming 

𝜔(0)  ≠  0. Moving forward, whenever an 𝐴-

tableau is referenced, it is invariably linked to the 

sequence 𝐴 =  {0, 1, 2, . . . , 𝑘}. 

Theorem 15. Consider 𝜔 ∶  𝑁∗  →  𝐾 as the

column weight based on length, defined by 

𝜔(|𝑐|)  =  |𝑐| +  𝑟, where |𝑐| represents the 

column length in A-tableau within the set 

𝑇𝐴(𝑘, 𝑛 − 𝑘). Then,

{
𝑛 + 𝑘

𝑛
}

𝑟
= ∑ ∏ 𝜔(|𝑐|)

𝑐∈𝜙  𝜙∈𝑇𝐴(𝑘,𝑛−𝑘)

. 

Proof. This immediately follows from (9). 

       By converting 𝐴-tableau columns in 

𝑇𝐴(𝑘, 𝑛 − 𝑘) into column lengths 𝜔(|𝑐|), we

create a tableau known as an 𝐴𝜔-tableau. It is

important to note that when 𝜔(|𝑐|) equals |𝑐|, 
the 𝐴𝜔 -tableau is essentially the 𝐴-tableau.

Here, we introduce an 𝐴𝜔(0,1)-tableau as a 0-1

tableau derived by filling the cells of an 𝐴𝜔-

tableau using 0 and 1 in a manner where only 

one 1 appears in each column. The set of all such 
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𝐴𝜔(0,1)-tableaux is denoted as

𝑇𝐴𝜔(0,1)(𝑘, 𝑛 − 𝑘). Hence, the second kind 𝑟-

Stirling numbers may be interpreted as follows:  

{
𝑛 + 𝑘

𝑛
}

𝑟
= the number of possible 𝐴𝜔(0,1)-

tableaux in 𝑇𝐴𝜔(0,1)(𝑘, 𝑛 − 𝑘) where 𝜔(|𝑐|)  =
 |𝑐| + 𝑟. 

Through the utilization of Theorem 2 and the 

definition of Aω(0,1)-tableau, we derive the 

following corollaries. 

        For the formula of the signed first kind 𝑟-

Stirling numbers in symmetric function form, 

we have the subsequent theorem.  

Theorem 16. The signed first kind r-Stirling 

numbers equal 

[
𝑛

𝑛 − 𝑚
̂

]
𝑟

= (−1)𝑛−𝑘 ∑ 𝑗1𝑗2 … 𝑗𝑚

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑚< 𝑛

. 

Equivalently, 

[
𝑛

𝑛 − 𝑚
]

𝑟
= ∑ 𝑗1𝑗2 … 𝑗𝑚

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑚< 𝑛

. 

Proof: Taking the derivative with respect to 𝑧 

to both sides of the following horizontal 

generating function 

∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑧𝑘

𝑛

𝑘=0

= (𝑧 − 𝑟)(𝑧 − 𝑟 − 1) … (𝑧 − 𝑟 − (𝑛 − 1)), 

we have 
𝑑

𝑑𝑧
((𝑧 − 𝑟)(𝑧 − 𝑟 − 1) … (𝑧 − 𝑟 − (𝑛 − 1))) 

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

𝑑

𝑑𝑧
𝑧𝑘

𝑛

𝑘=0

∑ (𝑧 − 𝑟 − 𝑗1)(𝑧 − 𝑟 − 𝑗2) … (𝑧 − 𝑟 − 𝑗𝑛−1)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−1≤ 𝑛−1

 

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘(𝑧)𝑘−1

𝑛

𝑘=1

. 

Taking the second derivative gives 

∑
𝑑

𝑑𝑧
(𝑧 − 𝑟 − 𝑗1)(𝑧 − 𝑟 − 𝑗2) … (𝑧 − 𝑟 − 𝑗𝑛−1)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−1≤ 𝑛−1

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘

𝑑

𝑑𝑧
(𝑧𝑘−1)

𝑛

𝑘=1

 

∑ 2(𝑧 − 𝑟 − 𝑗1)(𝑧 − 𝑟 − 𝑗2) … (𝑧 − 𝑟 − 𝑗𝑛−2)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−2≤ 𝑛−1

 

= ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘(𝑘 − 1)𝑧𝑘−2

𝑛

𝑘=1

 

2 ∑ (𝑧 − 𝑟 − 𝑗1)(𝑧 − 𝑟 − 𝑗2) … (𝑧 − 𝑟 − 𝑗𝑛−2)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−2≤ 𝑛−1

 

 = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘(𝑘 − 1)𝑧𝑘−2

𝑛

𝑘=1

. 

Applying 3rd derivative, we have 

2 ∑ 3(𝑧 − 𝑟 − 𝑗1)(𝑧 − 𝑟 − 𝑗2) … (𝑧 − 𝑟 − 𝑗𝑛−3)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−3≤ 𝑛−1

 

  = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘(𝑘 − 1)(𝑘 − 2)𝑧𝑘−3

𝑛

𝑘=1

. 

By induction, the kth  derivative evaluated at 

𝑧 = 0 gives 

𝑑𝑘

𝑑𝑧𝑘
((𝑧 − 𝑟)(𝑧 − 𝑟 − 1) … (𝑧 − 𝑟 − (𝑛 − 1)))|

𝑧=0

  = ∑ [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

𝑑𝑘

𝑑𝑧𝑘
𝑧𝑘

𝑛

𝑘=0

|

𝑧=0

𝑘! ∑ (0 − 𝑟 − 𝑗1)(0 − 𝑟 − 𝑗2) … (0 − 𝑟 − 𝑗𝑛−𝑘)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−𝑘≤ 𝑛−1

 

= [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟
𝑘! 

∑ (0 − 𝑟 − 𝑗1)(0 − 𝑟 − 𝑗2) … (0 − 𝑟 − 𝑗𝑛−𝑘)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−𝑘≤ 𝑛−1

 

= [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

∑ (−1)𝑛−𝑘(𝑟 + 𝑗1)(𝑟 + 𝑗2) … (𝑟 + 𝑗𝑛−𝑘)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−𝑘≤ 𝑛−1

= [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

(−1)𝑛−𝑘 ∑ (𝑟 + 𝑗1)(𝑟 + 𝑗2) … (𝑟 + 𝑗𝑛−𝑘)

0≤𝑗1<𝑗2<⋯<𝑗𝑛−𝑘≤ 𝑛−1

= [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

(−1)𝑛−𝑘 ∑ 𝑗1𝑗2 … 𝑗𝑛−𝑘

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑛−𝑘≤ 𝑛+𝑟−1

= [
𝑛 + 𝑟
𝑘 + 𝑟

]
̂

𝑟

∑ 𝑗1 … 𝑗𝑛−𝑟−(𝑛−𝑚−𝑟)

𝑟≤𝑗1<⋯<𝑗𝑛−𝑟−(𝑛−𝑚−𝑟)≤ 𝑛−𝑟+𝑟−1

= (−1)𝑛−𝑟−(𝑛−𝑚−𝑟) [
𝑛 − 𝑟 + 𝑟

𝑛 − 𝑚 − 𝑟 + 𝑟
]

̂

𝑟
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∑ 𝑗1𝑗2 … 𝑗𝑚

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑚< 𝑛

= (−1)𝑛−(𝑛−𝑚) [
𝑛

𝑛 − 𝑚
̂

]
𝑟

(−1)𝑛−(𝑛−𝑚) [
𝑛

𝑛 − 𝑚
̂

]
𝑟

= ∑ 𝑗1𝑗2 … 𝑗𝑚

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑚< 𝑛

. 

Equivalently, 

[
𝑛

𝑛 − 𝑚
]

𝑟
= ∑ 𝑗1𝑗2 … 𝑗𝑚

𝑟≤𝑗1<𝑗2<⋯<𝑗𝑚< 𝑛

. ∎ 

Horizontal and Vertical Recurrence Relations 

      Here, we establish other forms of recursive 

relations: the horizontal and vertical recursive 

relations. These relations are analogous to the 

hockey stick identities of the binomial 

coefficients. 

Theorem 17. The horizontal recursive 

relation satisfied by the second kind r-Stirling 

number is as follows: 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑(−1)𝑗

𝑛−𝑘

𝑗=0

(𝑘 + 𝑟 + 1)�̅� {
𝑛 + 𝑟 + 1

𝑘 + 𝑟 + 𝑗 + 1
}

𝑟

. 

Proof.  By making use of the triangular 

recurrence relation of the 𝑟-Stirlinng numbers 

of the second kind, we have 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= 

= ∑(−1)𝑗+1(𝑘 + 𝑟 + 1)𝑗+1̅̅ ̅̅ ̅̅

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟

+ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

+ ∑(−1)𝑗(𝑘 + 𝑟 + 1)𝑗+1̅̅ ̅̅ ̅̅

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟

= ∑ (−1)𝑗+1(𝑘 + 𝑟 + 1)𝑗+1̅̅ ̅̅ ̅̅

𝑛−𝑘

𝑗=−1

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟

 + ∑(−1)𝑗(𝑘 + 𝑟 + 1)𝑗+1̅̅ ̅̅ ̅̅

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟

= ∑(−1)𝑗(𝑘 + 𝑟 + 1)�̅�

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗}
𝑟

+ ∑(−1)𝑗(𝑘 + 𝑟 + 1)�̅�(𝑘 + 𝑟 + 1 + 𝑗)

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟

= ∑(−1)𝑗(𝑘 + 𝑟 + 1)�̅� {{
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗}
𝑟

+

𝑛−𝑘

𝑗=0

 

(𝑘 + 𝑟 + 1 + 𝑗) {
𝑛 + 𝑟

𝑘 + 𝑟 + 𝑗 + 1}
𝑟
}

= ∑(−1)𝑗(𝑘 + 𝑟 + 1)�̅�

𝑛−𝑘

𝑗=0

{
𝑛 + 𝑟 + 1

𝑘 + 𝑟 + 𝑗 + 1
}

𝑟

. ∎

      The following theorem contains another 

form of a recurrence relation, which is a 

consequence of the above rational generating 

function. 

Theorem 18. The vertical recursive 

relation adhered to by the second kind r-

Stirling numbers is as follows: 

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑(𝑘 + 𝑟)𝑛−𝑗

𝑛

𝑗=0

{
𝑗 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

Proof. Using Theorem 13, we have 

∑ {
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

𝑡𝑛

∞

𝑛=0

=
𝑡𝑘

∏ (1 − 𝑡(𝑗 + 𝑟))𝑘
𝑗=0

=
𝑡

1 − 𝑡(𝑘 + 𝑟)

𝑡𝑘−1

∏ (1 − 𝑡(𝑗 + 𝑟))𝑘−1
𝑗=0

= (𝑡 ∑(𝑡(𝑘 + 𝑟))
𝑛

∞

𝑛=0

) (∑ {
𝑛 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

𝑡𝑛−1

∞

𝑛=𝑘

) 

= (∑(𝑡(𝑘 + 𝑟))
𝑛

∞

𝑛=0

) (∑ {
𝑛 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

𝑡𝑛

∞

𝑛=𝑘

) 

= ∑ {∑(𝑡(𝑘 + 𝑟))
𝑛−𝑗

𝑛

𝑗=0

{
𝑗 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

𝑡𝑗}

∞

𝑛=0

= ∑ {∑(𝑘 + 𝑟)𝑛−𝑗

𝑛

𝑗=0

{
𝑗 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

}

∞

𝑛=0

𝑡𝑛

By comparing coefficient of 𝑡𝑛 both sides,

we have  

{
𝑛 + 𝑟
𝑘 + 𝑟

}
𝑟

= ∑(𝑘 + 𝑟)𝑛−𝑗

𝑛

𝑗=0

{
𝑗 + 𝑟 − 1
𝑘 + 𝑟 − 1

}
𝑟

. ∎

      It is worth-mentioning that the recurrence 

relations in Theorems 15 and 16 are not 

considered by Broder (1984). 

CONCLUSION AND RECOMMENDATION 

        A slightly modified 𝑟-Stirling numbers, 

also called the SM 𝑟-Stirling numbers, were 

successfully defined by means of exponential 

generating function. An algebraic approach has 
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been employed to uncover interesting properties 

and identities, encompassing the exploration of 

horizontal generating functions, orthogonality 

and inverse relations, triangular recurrence 

relations, explicit formulas, rational generating 

functions, and explicit formulas in symmetric 

function form. A new combinatorial interpretation 

for second kind 𝑟-Stirling numbers has been 

constructed in terms the combinatorics of 0-1 

tableau using the explicit formulas in Theorem 

14 in symmetric function form.  The paper has 

been concluded by introducing two innovative 

structures of recursive relations: the horizontal 

and vertical recursive formulas, analogous to the 

famous "Hockey Stick" identity for binomial 

coefficients.   

      The method employed in defining the SM 

𝑟-Stirling numbers shares similarities with the 

conventional approach used for defining 

Bernoulli, Euler, and Genocchi numbers 

(Abramowitz and Stegun, 1970), (Agoh, 2014), 

(Araci, 2012), (Araci, 2014), (Corcino, 2020), 

(Kim et al., 2012). Consequently, there is a 

potential to introduce novel variants of SM 𝑟-

Stirling numbers by integrating them with the 

concepts of Bernoulli, Euler, and Genocchi 

numbers. Specifically, these variants may be 

defined as follows: 

∑ 𝑆𝐵𝑛
1(𝑘; 𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= (

1

1 + 𝑡 
)

𝑟 𝑡 lnk(1 + 𝑡) 

𝑘! (𝑒𝑡 − 1)

∑ 𝑆𝐵𝑛
2(𝑘; 𝑟)

𝑡𝑛

𝑛!
=

∞ 

𝑛=0

𝑡𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘−1

𝑘!

∑ 𝑆𝐸𝑛
1(𝑘; 𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= (

1

1 + 𝑡 
)

𝑟 2 lnk(1 + 𝑡)

𝑘! (𝑒𝑡 + 1)

∑ 𝑆𝐸𝑛
2(𝑘; 𝑟)

𝑡𝑛

𝑛!
=

∞ 

𝑛=0

2𝑡𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘

𝑘! (𝑒𝑡 + 1)

∑ 𝑆𝐺𝑛
1(𝑘; 𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= (

1

1 + 𝑡 
)

𝑟 2𝑡 lnk(1 + 𝑡) 

𝑘! (𝑒𝑡 + 1)

∑ 𝑆𝐺𝑛
2(𝑘; 𝑟)

𝑡𝑛

𝑛!
=

∞ 

𝑛=0

2𝑡𝑒𝑟𝑡(𝑒𝑡 − 1)𝑘

𝑘! (𝑒𝑡 + 1)

where 𝑆𝐵𝑛
1(𝑘; 𝑟), 𝑆𝐵𝑛

2(𝑘; 𝑟),  𝑆𝐸𝑛
1(𝑘; 𝑟),

𝑆𝐸𝑛
2(𝑘; 𝑟), 𝑆𝐺𝑛

1(𝑘; 𝑟) and 𝑆𝐺𝑛
2(𝑘; 𝑟) may

denote the first and second kinds 𝑟-Stirling-

Bernoulli numbers, the  first and second kinds 𝑟-

Stirling-Euler numbers and the first and second 

kinds 𝑟-Stirling-Genocchi numbers, respectively. 

      It is also interesting to establish a 𝑞-analogue 

of SM 𝑟-Stirling numbers following the method 

used by Corcino and Montero (2012) in 

establishing the 𝑞-analogue of Rucinski-Voigt 

numbers. Further insights can be gleaned from 

the works of Corcino and Barrientos (2011) and 

Corcino and Corcino (2012). 
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