Published 23-06-2023
Keywords
- Stirling numbers, r-Stirling numbers, generating functions, orthogonality,
- relations,recursive formula, explicit formula, Schlömilch formula
Abstract
The SM r-Stirling numbers by Broder were initially defined through their combinatorial interpretation, and all essential properties and identities were obtained using a combinatorial approach. This paper introduces a slightly modified version of the -Stirling numbers through their exponential generating functions and derives all necessary properties and identities using an algebraic approach.
References
- Abramowitz, M. and Stegun, I., 1970. Handbook of Mathematical Functions. Dover, New York.
- Agoh, T., 2014. Convolution identities for Bernoulli and Genocchi polynomials. Electronic J. Combin., 21:Article ID P1.65.
- Araci, S., 2012. Novel identities for q-Genocchi numbers and polynomials. J. Funct.Spaces Appl., 2012:Article ID 214961.
- Araci, S., 2014. Novel identities involving Genocchi numbers and polynomials arising from application of umbral calculus. Appl. Math. Comput., 247:780–785.
- Broder, A.Z., 1984. The r-Stirling numbers,” Discrete Mathematics, 49(3), pp. 241–259.
- Chen, C-C. and Koh, K-M., 1992. Principles and Techniques in Combinatorics, World Scientific.
- Comtet, L., 1974. Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, Holland.
- Corcino, R.B., 2020. Multi Poly-Bernoulli and Multi Poly-Euler Polynomials. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-99918-0_21
- Corcino, R. B. and Barrientos, C., 2011. Some Theorems on the q-Analogue of the Generalized Stirling Numbers, Bulletin of the Malaysian Mathematical Sciences Society, 34(3), pp. 487-501.
- Corcino, R.B. and Corcino, C.B., 2012. The Hankel Transform of Generalized Bell Numbers and Its q-Analogue, Utilitas Mathematica, 89, pp. 297-309.
- Corcino, R. B. and Montero, C.B., 2012. A q-Analogue of Rucinski-Voigt Numbers, ISRN Discrete Mathematics, 2012, Article ID 592818, 18 pages.
- Corcino, R.B., Montero, M.B. and Ballenas, S., 2014. Schlömilch-Type Formula for r-Whitney numbers of the First Kind, Matimyas Matematika, 37(1-2), pp. 1-10.
- De Medicis, A. and Leroux, P., 1995. Generalized Stirling Numbers, Convolution Formulae and p,q-Analogues, Can. J. Math 47(3), pp. 474-499.
- Kim, T., Kim, D.S., Dolgy, D.V. and Rim, S.H., 2012. Some formula for the product of two Bernoulli and Euler polynomials. Abstr. Appl. Anal., 2012:Article ID 784307, 15 pages.
- Stirling, J., 1730. Methodus Differentialis, Sire Tractatus De Summatione et Interpolazione Serierum Infinitorum, London.